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Memory contains information about individual events (items) and combinations of events
(associations). Despite the fundamental importance of this distinction, it remains unclear
exactly how these two kinds of information are stored and whether different processes
are used to retrieve them. We use both model-independent qualitative properties of
response dynamics and quantitative modeling of individuals to address these issues.
Item and associative information are not independent and they are retrieved concurrently
via interacting processes. During retrieval, matching item and associative information
mutually facilitate one another to yield an amplified holistic signal. Modeling of individuals
suggests that this kind of facilitation between item and associative retrieval is a ubiquitous
feature of human memory.
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1. Introduction

Memory contains information about both single events—‘‘items”—and combinations of events—‘‘associations” (Anderson
& Bower, 1973; Murdock, 1974). Being able to store and retrieve both of these kinds of information underlies the ability to
discover meaningful temporal and spatial structure in the environment (e.g., causal regularities, correlations, and event sche-
mata; Zacks & Tversky, 2001) and dissociations between item and associative memory are important for a variety of neuro-
logical diagnoses, including memory deficits with age (Naveh-Benjamin, 2000). Despite the fundamental nature of this
distinction, it remains unclear exactly how item and associative information are stored and what processes are used to
retrieve them.

Many dual-process theories (Jacoby, 1991; Yonelinas, 1997) posit that item information is retrieved primarily via a ‘‘fa-
miliarity” process while associative information can only be retrieved using an independent ‘‘recollection” process. That
these processes retrieve different kinds of information implies that item and associative information are stored separately
and may be represented in qualitatively different forms accessible only to particular processes. However, arguments in favor
of this view have relied on measures of recognition accuracy that are not diagnostic of the types of processes involved (Dunn,
2004, 2008; Pratte & Rouder, 2012; Wixted, 2007) and that are only reliable under the strong assumption of item and asso-
ciative independence (Curran & Hintzman, 1995; Hillstrom & Logan, 1997; Ratcliff, Van Zandt, & McKoon, 1995). In contrast,
item and associative memory are often correlated: Item recognition is affected by the presence of an intact association, even
when it is irrelevant to the task (Clark & Shiffrin, 1987; Tulving & Thompson, 1973) and while participants are able to sep-
jm/.
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arately assess memory for items and associations, they are influenced by the strength of both items and associations when
doing so (Aue, Criss, & Novak, 2017; Buchler, Light, & Reder, 2008). While these results still allow the possibility that item
and associative retrieval rely on separate processes, they imply that such processes are not mutually exclusive, with item and
associative information being represented in the same memory store (Gillund & Shiffrin, 1984).

Where there are differences between item and associative retrieval, they are most clearly found in retrieval dynamics:
People can discriminate between studied and unstudied items faster than they can distinguish learned from unlearned pair
associations (Gronlund & Ratcliff, 1989; Nobel & Shiffrin, 2001; Rotello & Heit, 2000). While this delay has been attributed to
an independent ‘‘recall-to-reject” process for associative retrieval (Rotello & Heit, 2000), this account predicts that partial
cues will aid associative recognition (i.e., using a singly presented word to retrieve its studied associate), but in fact they
do not (Gronlund & Ratcliff, 1989). Paradoxically, these results are more consistent with a strong interaction between item
and associative retrieval in which item information serves to ‘‘gate” associative retrieval by providing a baseline or context
against which later associative information is judged (Cox & Shiffrin, in press; Criss & Shiffrin, 2005; Hockley, 1991). A gating
mechanism also explains why focusing on items impairs associative memory, but focusing on associations has no negative
impact on item memory (Hockley & Cristi, 1996a) and why associative interference occurs only among pairs comprised of
the same types of items (Aue, Criss, & Fischetti, 2012; Criss & Shiffrin, 2004). Once again, these interactions imply not just
that item and associative information are stored in the same memory structure, but that the processes used to retrieve them
are not independent.

While there appear to be differences in the dynamics with which item and associative information are retrieved, and
while it appears these two kinds of information are related in some sense, it remains unclear what the nature of these
dynamic differences and relationships are. They may result from two independent retrieval processes operating on corre-
lated memory structures, from interactions during retrieval itself, from some combination of these, or some even more exo-
tic form of interaction. A set of experimental and analytical tools known as Systems Factorial Technology (SFT; Townsend &
Nozawa, 1995) is designed to address exactly these questions. Applying these tools to the study of long-term memory has,
however, proven difficult due to various technical limitations. In this study, we overcome these limitations. Based on con-
verging evidence from qualitative properties of retrieval dynamics as measured by SFT and from quantitative modeling of
individual participants, we show that item and associative information are retrieved concurrently and that they are not inde-
pendent, nor are independent processes used to retrieve them. After describing our experimental methods, we explain how
we applied SFT analyses and individual modeling to derive these conclusions. Finally, we discuss how our results place
strong constraints on future theory development and have important implications for understanding how event memory
is related to long-term learning.

2. Methods

We measured the dynamics of item and associative retrieval in a recognition paradigm that requires retrieval of both
kinds of information. After studying a list of pairs, e.g., AB, CD, EF, etc., participants must later discriminate between intact
studied pairs and three kinds of foil pairs. We denote intact studied pairs, like AB, IþAþ pairs since both the items in the pair
(I) and the association between the items (A) match what was studied (þ). IþA� pairs, often called ‘‘rearranged” pairs, are
formed by exchanging items between two studied pairs, e.g., CF or ED; in this case, the items match the study situation,
but the association does not. I�Aþ pairs are formed by replacing the items in an intact pair with similar unstudied items
(e.g., A0B0); while the items may not exactly match what was studied, the relational information between them is preserved,
leaving the association intact. I�A� pairs are formed by performing both of these operations (e.g., C0F0). Thus, neither item nor
associative information is sufficient on its own to identify IþAþ pairs—both item and associative information must be
retrieved. This can be contrasted with the studies reviewed in the Introduction in which the presence of one or more unstud-
ied items entails that the association is also unstudied.

To be able to apply the tools of SFT, we also separately vary the strength of each kind of information in memory, yielding
both high and low associative strength, AH and AL, and high and low item strength, IH; IL, for all pair types (as shown in Fig. 2).
As described below, these strength manipulations allow us to compute one of the critical statistics of SFT which can enable
us to determine the nature of the processes by which item and associative information are retrieved and the extent to which
they interact (for an overview and tutorial on SFT, see Houpt, Blaha, McIntire, Havig, & Townsend, 2014).

2.1. Participants

135 Syracuse University students took part in this experiment in exchange for course credit after providing informed con-
sent in accord with local Institutional Review Board policy.

2.2. Materials

Stimuli consisted of indoor and outdoor scene images derived from two image sets (Goh et al., 2004; Konkle, Brady,
Alvarez, & Oliva, 2010). The images were first screened to remove any legible writing (to preclude this as a strategy to
remember particular images) as well as people (since these were particularly salient relative to other scene content). We
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then selected a subset of these images that would be most suitable for the present design, namely, images that would be
easily distinguished from one another while, at the same time, being roughly symmetrical such that the left and right halves
were similar.

To that end, we defined the similarity of images/image halves using the color histogram. We converted the RGB pixel val-
ues in each image to the perceptually-based CIELAB colorspace, defined by three dimensions: lightness L� (ranging from 0 to
100), red-green chromaticity a� (ranging from 0 to 360 degrees), and blue-yellow chromaticity b� (ranging from 0 to 360
degrees). Histogram bins were defined by dividing L� into 8 equal-sized bins and a� and b� each into 16 equal-sized bins.
Similarity between any two images i and j was measured using the symmetrized KL divergence between their color his-
tograms, Fi and Fj:
KLij ¼
X
l;a;b

Fiðl; a; bÞ log Fiðl; a; bÞ
Fjðl; a; bÞ þ

X
l;a;b

Fjðl; a; bÞ log Fjðl; a; bÞ
Fiðl; a; bÞ
which is 0 when Fi and Fj are identical and increases as the histograms becomemore dissimilar. We also computed the diver-
gence between the color histograms of the left and right halves of each image i in the set, KLiLiR . The ‘‘goodness” gi of an image
i was defined as the ratio between the minimum inter-image divergence and the intra-image divergence, gi ¼ minKLij=KLiLiR ,
which is large when the image is highly dissimilar to all other images and/or highly symmetrical and is small when the
image is very similar to other images and/or very asymmetrical. We then selected the images with the top 512 ‘‘goodness”
values for use in the experiment. Images were down-sampled to a uniform size of 256� 256 pixels.

2.3. Design

Each study/test list was comprised of 16 unique pairs of image halves, divided evenly into four strength conditions
defined by the factorial combination of high and low item strength and high/low associative strength, as summarized in
Table 1. High associative strength pairs were presented 3 times during the study list while low associative strength pairs
were presented only once during study. The image halves in a low item strength pair appeared only as part of the study pair.
For high item strength pairs, each image half from the pair was presented twice paired with itself (e.g., AA and BB). In total,
the study list comprised 64 trials: 8 low strength pair presentations, 24 high strength pair presentations (8 pairs repeated 3
times), and 32 self-pairings of an image half (2 presentations each of the 2 halves of 8 high item strength pairs). Test lists
consisted of 16 pairs, summarized in Table 2, with examples of each pair type shown in Fig. 1. Thus, each study/test block
provides one observation of each cell in the double factorial design.

2.4. Procedure

The experiment was implemented in PsychoPy (Peirce, 2007). Participants engaged in 10–11 study/test blocks depending
on how many they could complete in an hour. The images used to construct the study and test lists were randomly sampled
without replacement from the stimulus pool for each study/test block.

Prior to each block, participants were told that they would be shown sets of image pairs and that they should try to
remember which images appeared together. Study pairs were then presented on a white background for 2 s at a time, with
a 0.5 s blank between each pair presentation. Presentation order was randomized under the constraint that two successive
pairs did not contain any of the same image halves. The two image halves subtended approximately 3 degrees of visual angle,
with approximately 0.5 degrees of blank space between them. Although the image pairs were centered horizontally on the
screen, the left and right halves were independently offset from vertical center by random values sampled uniformly from
[�0.25, 0.25] degrees of visual angle. This offset, illustrated in Fig. 1, served two purposes: first, to emphasize that the two
image halves were not meant to be treated as part of the same image; second, to avoid visual masking between successive
pair presentations. Assignment of left/right position within a pair was the same each time a pair was presented in that study/
test block.

After presentation of all study pairs, participants were informed that they would be shown another set of image pairs and
should give a positive response only to pairs of images that had appeared together at the same time on the most recent list
(i.e., IþAþ pairs). Positive and negative responses were randomly mapped to the ‘‘F” or ‘‘J” keys for each participant. Partic-
ipants were instructed to respond as quickly and accurately as possible. Test instructions appeared on screen for a minimum
of 15 s, after which participants could press ‘‘enter” to proceed to the test list. Each test trial began with a fixation cross cen-
tered on the screen for 0.5 s followed by presentation of the test pair (which followed the same sizing and random vertical
offset procedure used during study). The test pair remained on screen until a response was made, after which feedback was
given. Participants were told whether their response was ‘‘correct” or ‘‘incorrect”, with font color green if correct and red if
incorrect. Regardless of correctness, if the response was made in under 300 ms, feedback included a statement to ‘‘please
take more time to respond” and if the response was made in over 4 s, feedback included a statement to ‘‘please try to respond
more quickly”. Feedback appeared for a minimum of 1 s, an additional 0.5 s if the participant was incorrect, and an additional
3 s if the response was too fast. A random time sampled at uniform between 0.25 and 0.75 s preceded the onset of the next
test trial to prevent participants from entraining to a constant presentation rate and producing rhythmic response time
artifacts.



Table 1
Design of pairs used in each study list, from which test lists were
constructed (see Table 2). Numbers refer to a particular image (of
which only the left or right half was studied) within a study-test
block; different images were randomly drawn from the stimulus
pool without replacement for each study-test block, such that the
images labeled ‘‘1”, ‘‘2”, etc., differed for each block. High (H)
associative strength pairs were shown three times during study,
while low (L) associative strength pairs were shown only once.
High (H) item strength pairs had each of their component items
shown paired with themselves (e.g., [1, 1] and [2, 2]) twice during
the study phase.

Images in pair Item strength Associative strength

1, 2 H H
3, 4 H L
5, 6 H H
7, 8 H H
9, 10 H L
11, 12 H L
13, 14 L H
15, 16 L L
17, 18 L H
19, 20 L H
21, 22 L L
23, 24 L L
25, 26 H H
27, 28 H L
29, 30 L H
31, 32 L L
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3. Results

Prior to analysis, we excluded trials in which the response time was shorter than 200 ms (47 out of 21,369 trials) or longer
than 5 s (127 trials). Excessively long response times are likely to reflect processes beyond those involved in recognizing the
test pair, particularly distractions, while excessively short response times could not have resulted from processing the test
pair at all. Based on the remaining trials, we excluded participants who failed to give a higher rate of positive responses to
intact pairs than to foils or who did not give any correct responses in at least one condition in order to ensure that our con-
clusions were based on individuals who understood the task instructions. All subsequent analyses were carried out on the
remaining 18,760 trials from 118 participants.

Mean proportion of positive (‘‘yes”) responses is given in Table 3 and median correct RT in Table 4 for each combination of
item and associative strength. A 4 (item strength) � 4 (associative strength) within-subjects ANOVA on the proportion of
positive responses finds main effects of item strength (Fð3;351Þ ¼ 298:4; p � 0) and associative strength
(Fð3;351Þ ¼ 238:3; p � 0) as well as a significant interaction (Fð9;1053Þ ¼ 42:4; p � 0). Using the same 4� 4 ANOVA to ana-
lyze median correct RT, we again find main effects of item strength (Fð3;351Þ ¼ 10:44; p � 0) and associative strength
(Fð3;351Þ ¼ 3:01; p � 0:03) as well as a significant interaction (Fð9;1053Þ ¼ 8:99; p � 0).

The above analyses merely establish the effectiveness of our experimental manipulations. Inspection of Tables 3 and 4
suggests several important questions that, if answered, would provide a strong characterization of the processes underlying
item and associative memory:

1. As the strength of either item or associative information is increased, IþAþ pairs are correctly accepted more often and
more quickly. As the strength of either item or associative information is decreased, foil pairs are correctly rejected more
often and more quickly, albeit this difference is less pronounced for I�Aþ and I�A� pairs than for IþA� pairs.
(a) Does this indicate any interactions between item and associative memory processes?
(b) If so, do those interactions occur during retrieval, are they a byproduct of how information is stored in memory, or

both?
2. IþAþ pairs are accepted more often and faster than either I�Aþ or IþA� pairs. Similarly, I�A� pairs are correctly rejected

more often and more quickly than IþA� or I�Aþ pairs. Howmuch does it help to have two sources of matching information
(both items and association) rather than just one? How much does it help to have two sources of mismatching informa-
tion? What do these interactions imply about how matching and mismatching information is treated during retrieval?

Each of these questions is answered in the analyses below, in which we use the tools of SFT and individual modeling to
characterize the processes underlying item and associative memory.



Table 2
Design of each test list. Numerals refer to the same images in the study design in
Table 1, with apostrophes denoting the unstudied half of the image labeled by the
numeral. Participants were instructed to give a positive response to pairs in the
upper left quadrant (IþAþ pairs, shown here with a gray background) and to give a
negative response to other types of test pair. Because different images were ra-
ndomly sampled (without replacement) from the stimulus pool for each study-
test block, the images labeled ‘‘1”, ‘‘2”, etc. differed for each block. Thus, this table
represents the experimenter’s knowledge of the design and could not be inferred
by the participant.
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4. Analysis

Our analysis begins by first obtaining robust estimates of the response time distributions in each condition. We use the
estimated RT distributions to compute the statistics needed for SFT: the survivor interaction contrast (SIC) functions and the
capacity assessment functions, described in detail below and summarized schematically in Fig. 2. The SIC functions answer
question 1a, pertaining to the presence of interactions between item and associative memory. The assessment functions
answer question 2, regarding how matching and mismatching item and associative information are combined. Finally, we
use modeling of individuals to both validate the conclusions drawn from SFT and to answer question 1b, regarding the loci
of interactions between item and associative memory.

4.1. Estimating RT distributions

In contrast to most applications of SFT (and response time studies generally), we have a large number of participants but
relatively few observations per participant per condition. We therefore take a parametric Bayesian approach to estimating RT
distributions, which has the additional benefit of allowing for robust statistical tests of the resulting SFT measures (for back-
ground on Bayesian data analysis, see Kruschke, 2015).

4.1.1. Parameters
Each subject s is associated with a total of 4� 4� 2 ¼ 32 RT distributions defined by the factorial combination of item

strength i, associative strength j, and positive (‘‘yes”)/negative (‘‘no”) response r. We assume that all of these distributions
are Ex-Gaussian with parameters m̂ijrs (mean of the Gaussian component), ŝijrs (standard deviation of the Gaussian compo-
nent), and t̂ijrs (shape of the exponential component) and cumulative distribution function
1 Oth
FijrsðxÞ ¼ U
x� m̂ijrs

ŝijrs

� �
�U

x� m̂ijrs

ŝijrs
� ŝijrs
t̂ijrs

 !
exp

ŝ2ijrs
2t̂2ijrs

� x� m̂ijrs

t̂ijrs

 !
ð1Þ
where Uð�Þ is the standard normal cumulative distribution function. The Ex-Gaussian has been found to provide a good
description of RT distributions in recognition memory (Ratcliff & Murdock, 1976) and can accommodate a variety of distri-
bution shapes. In addition to these parameters, we estimate the probability ĥijs that participant smakes a positive response to
a pair with item strength i and associative strength j.

4.1.2. Bayesian model
All of the above parameters are estimated simultaneously according to the hierarchical Bayesian model described in

Appendix C (Rouder, Lu, Speckman, Sun, & Jiang, 2005). The model was implemented in JAGS (Plummer, 2013), which
was used to obtain 10,000 posterior samples split over 10 parallel chains after 2000 iterations of ‘‘burn-in” each. By obtaining
a posterior distribution over RT distributions, we obtain posterior distributions over quantities derived from these distribu-
tions, namely, the key statistics needed in Systems Factorial Technology.

4.1.3. Posterior RT distributions
For each of the 10,000 posterior samples, we obtained an estimate of the RT distributions across all pair types by using the

Ex-Gaussian RT distributions derived from the mean1 subject parameters in that sample. For each level of item strength i, asso-
ciative strength j, and response r, the mean subject parameters for sample n are given by:
er measures of central tendency, like the median and mode, give qualitatively identical results to those reported here.



Fig. 1. Examples of four image pairs shown at study (A) and how they can be used to construct the four types of test pair (B). In the experiment, no letters
were superimposed on the images—this is merely for illustration. Apostrophes denote the unstudied half of an image, e.g., E’ is the unstudied half of image
E.
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�hij½n� ¼ Means ĥijs½n�
h i

�mijr½n� ¼ Means m̂ijrs½n�
� �

�sijr½n� ¼ Means ŝijrs½n�
� �

�tijr½n� ¼ Means t̂ijrs½n�
� �
The estimate for the RT distribution given item strength i, associative strength j, and response r is then found by plugging
the sampled modal parameters into Eq. (1), yielding the distribution function
Fijr½n�ðxÞ ¼ U
x� �mijr½n�

�sijr½n�
� �

�U
x� �mijr½n�

�sijr½n� � �sijr ½n�
�tijr½n�

� �
exp

�sijr ½n�2
2�tijr½n�2

� x� �mijr½n�
�tijr ½n�

 !
ð2Þ
as well as the probability Pij½n� ¼ �hij½n�, the modal probability of giving a positive response. The result is 10,000 posterior sam-
ples of the group-level RT distributions and response probabilities for each combination of item strength, associative
strength, and response type. These samples, in turn, yield samples of the SFT statistics needed to identify the type of retrieval
architecture operating in this task, as we now describe.

4.2. Systems factorial analysis

While previous studies have found that item information is retrieved more quickly than associative information, as dis-
cussed in the Introduction, it remains unclear how these two retrieval processes are related. The tools of Systems Factorial
Technology (SFT) are ideally suited to address this issue. SFT makes no a prioricommitments to any of the many possible
arrangements of retrieval processes and interactions that could be used in this paradigm, instead allowing for a simultaneous
comparison against all possibilities. It may be that item and associative information are retrieved simultaneously (though
not necessarily at the same rate), called parallel processing, or it may be that one type of information (say, associative) is
not retrieved until the first retrieval process is finished, called serial processing. If either item or associative information
can be used to make a response, processing is called ‘‘self-terminating”. If, however, both types of information must be
retrieved to generate a response, processing is ‘‘exhaustive”. Two responses are made in this paradigm—either a positive
‘‘yes” response or a negative ‘‘no” response—so if one type of response requires exhaustive processing, then the other logi-
cally entails self-terminating processing (otherwise there would be a non-trivial probability of never making a response).

We conceive of interactions between item and associative retrieval as a kind of pooling in which match and/or mismatch
information is mutually reinforced, as shown in Fig. 3A. If positive evidence from both item and associative retrieval is



Table 3
Observed mean proportion of ‘‘yes” responses (with standard deviations in parentheses) for
each combination of item and associative strength. Shaded cells indicate IþAþ pairs, which
should be given a positive response.
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pooled into a holistic ‘‘match”, we say that positive responses are facilitated whereas negative responses are inhibited, and
vice versa if negative evidence is pooled into a holistic ‘‘mismatch”. In the extreme case, both match and mismatch informa-
tion might be pooled from both sources, making them effectively inseparable, termed ‘‘coactive” processing. Note that any
kind of interaction of this form entails parallel processing since even if one process begins earlier than the other, they must
eventually operate concurrently in order to pool their information. This kind of parallel processing falls under the heading of
‘‘continuous-flow” systems (Liu, 1996; Miller, 1993; Schweickert, 1989; Townsend & Fikes, 1995), one example of which is
the well-known ‘‘cascade” model (Ashby, 1982; McClelland, 1979) in which the output from early stages of processing serves
as input to subsequent stages.

The key insight in SFT is that all of these different kinds of processing will leave qualitatively different signatures in the
response time (RT) distributions participants produce. By comparing the qualitative forms of these signatures to those
allowed by each retrieval architecture, we characterize how item and associative information are retrieved and how they
interact. In situations where the experimental manipulation selectively influences only one process, analytic methods alone
can be used to derive predictions for these signatures (Townsend & Nozawa, 1995). We could not guarantee selective influ-
ence in our applications, however. Consider, for example, that repeating a pair to enhance the strength of the stored asso-
ciation also entails repeating the two items in the pair, likely increasing their strength as well, or that repeating items in
isolation (AA or BB) may interfere with their association (AB). In addition, error rates tend to be higher in our study than
in those to which SFT is typically applied. We therefore obtained predictions for the SFT measures using a combination of
simulations (Diederich & Busemeyer, 2003; Eidels, Houpt, Altieri, Pei, & Townsend, 2011; Fific, Nosofsky, & Townsend,
2008) and analytic methods (Townsend & Thomas, 1994), as described in Appendix A. The resulting predictions allow for
both a large proportion of errors (from near 0% to 96%) and violations of selective influence; while we lose the statistical
power available with low error rates and selective influence, we can be confident that we have provided a fair qualitative
characterization of each possible retrieval architecture.

4.2.1. Interactions between item and associative memory
As shown in Fig. 2, the Survivor Interaction Contrast (SIC) function compares RT distributions within each pair type in

order to characterize how varying the strengths of item and associative information affect retrieval speed for each type of
pair. Specifically, the SIC measures whether the effect of changing the strength of one type of information depends on
how strong the other information source is (e.g., is going from IþL A

þ
L to IþHA

þ
L different than going from IþL A

þ
H to IþHA

þ
H?). In this

sense, it is analogous to a mean interaction contrast in Analysis of Variance, only instead of just the mean response times, the
contrast is applied to the entire distribution.

For example, increasing the strength of either item or associative information should lead to faster correct responses to
IþAþ pairs, regardless of what kind of retrieval process is involved. This speedup is reflected in the survivor function2 of the
response time distribution: For all times t; SIþHAþH ðtÞ 6 SIþHAþ

L
ðtÞ; SIþHAþ

H
ðtÞ 6 SIþL AþH ðtÞ; SIþHAþH ðtÞ 6 SIþL AþL ðtÞ; SIþHAþL ðtÞ 6 SIþL AþL ðtÞ, and

SIþL AþH ðtÞ 6 SIþL AþL ðtÞ, where each SijðtÞ ¼ 1� FijðtÞ is the survivor function of the correct response times to pairs with item strength

i and associative strength j. The SIC for IþAþ pairs then asks whether going from IþL A
þ
L to IþHA

þ
L —increasing item strength when

associative strength is low—produces a different speedup than going from IþL A
þ
H to IþHA

þ
H—increasing item strength when asso-

ciative strength is high. Similarly, for pairs that participants should reject as foils (IþA�
; I�Aþ, and I�A�), reducing the strength

of either item or associative information should lead to faster correct responses (SI�L A�
L
ðtÞ 6 SI�HA�

L
ðtÞ, etc.) and the SIC for those

pairs asks whether this speedup depends on the strength of the other source of information. Formally, the SIC function for
each type of pair is given by
2 The
 survivor function is one minus the cumulative distribution function.



Table 4
Observed median correct response time (in seconds, with standard deviations in parentheses) for each
combination of item and associative strength. Shaded cells indicate IþAþ pairs, which should be given a positive
response.
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SICIþAþ ðtÞ ¼ SIþL AþL ðtÞ � SIþL Aþ
H
ðtÞ

h i
� SIþHAþL ðtÞ � SIþHAþH ðtÞ
h i

SICIþA� ðtÞ ¼ SIþHA�H ðtÞ � SIþHA�
L
ðtÞ

h i
� SIþL A�H ðtÞ � SIþL A�L ðtÞ
h i

SICI�Aþ ðtÞ ¼ SI�HAþH ðtÞ � SI�HAþ
L
ðtÞ

h i
� SI�L AþH ðtÞ � SI�L AþL ðtÞ
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:

Depending on whether retrieval is serial or parallel, whether the decision rule is self-terminating or exhaustive, and
whether or not the two retrieval processes interact, the SIC can take a variety of possible forms, as depicted in Fig. 3B.
Although Appendix A contains the complete derivation these forms, to provide some intuition, we consider why the SIC
can take on different forms depending on the kind of interaction between item and associative retrieval.

Independent: If item and associative retrieval are independent, they could be retrieved either in serial or in parallel.
Imagine that item and associative information are retrieved in parallel and that ‘‘yes” responses are made using an
exhaustive decision rule such that both processes must yield a match before a pair is recognized. As either item or asso-
ciative strength is increased, recognition is faster, but because of the exhaustive decision rule, having low strength on
either dimension still results in relatively slow processing; only when both types of information are high strength does
a substantial speedup result. This is reflected in the SICIþAþ function for correct acceptance responses that dips below zero.
On the other hand, the SIC functions for correct rejections will have positive deflections because they are self-
terminating—only one source needs to mismatch in order to get a big speedup. These examples make clear that the
SIC can deviate from zero even in the absence of any interactions between the two retrieval processes due to statistical
facilitation (or inhibition) resulting from the stopping rule.
Facilitatory: If there are interactions between item and associative retrieval, they cannot be retrieved strictly in parallel
since, as mentioned above, they must operate concurrently for at least some time in order to interact. Imagine that
matching item and associative information facilitated one another, but the decision rule was still to respond ‘‘yes” only
if both item and associative retrieval processes yielded a positive response. Although exhaustive processing still entails
waiting for both kinds of information to be retrieved, which would ordinarily yield a negative SIC, facilitation overcomes
this and allows for the SIC to be greater than zero, reflecting a true—rather than merely statistical—facilitatory interaction
between item and associative retrieval.
Inhibitory: Continuing with the example above, if match information is facilitated, this has the effect of inhibiting mis-
match information in the sense that more mismatch is needed to overcome any mutually facilitatory match information.
‘‘No” responses then result from inhibitory self-terminating processing. Even though, in this example, only one process
needs to yield a negative result for a ‘‘no” response to be made, the facilitation of the competitor response means that
rejections are fast only when both item and associative strength are low, resulting in an SIC that is equal to or less than
zero.
Coactive: If both match andmismatch information are pooled together, coactive processing results, for which it no longer
makes sense to consider self-terminating or exhaustive decision rules, since there is effectively only one source of
(pooled) information. It seems natural to think that coactive processing is the ultimate form of facilitatory processing
and, as such, should yield strictly positive SIC’s, but this is not the whole story: recall that facilitation of one response
is inhibition for the other. By pooling all information, the match evidence is contaminated by mismatch evidence and vice
versa. Coactive processing can thus predict a negative SIC if the evidence for a correct response is sufficiently weak. Fur-
ther, even if evidence is strong and there is a positive deflection in the SIC, any such deflection will always be preceded by
a, typically smaller, negative deflection, owing to the pooling of information leading to both correct and incorrect
responses.



Fig. 2. Double factorial manipulation of item and associative strength, allowing estimation of response time distributions in each cell (with probability
density on the vertical axis and time on the horizontal axis). Colored lines indicate the distributions used to compute qualitative signatures of retrieval
processes. The survivor interaction contrast (SIC) function examines interactions in retrieval speed by comparing the four distributions within each pair
type, while the assessment function examines how matching and mismatching item and associative information is combined across pair types.
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SIC’s were computed for each sample of RT distributions from the Bayesian posterior (see above). Specifically, for each
sample n, we plug in the survivor functions S��½n�ðtÞ ¼ 1� F ��½n�ðtÞ computed from Eq. (2) to obtain n ¼ 1 . . .10;000 samples
of each SIC
3 In t
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:

We can then examine the resulting distributions over each SIC function to determine whether it has credible deflections
above and/or below zero, as predicted by each possible retrieval architecture.

The observed SIC function for correct acceptance of IþAþ pairs (SICIþAþ ðtÞ, Fig. 4, upper left) demonstrates a credible pos-
itive peak (95% credible interval [CI] of the maximum is [0.023, 0.114]) but no evidence for any negative deflections (95% CI
of the minimum is [�0.015, 0], thus including zero), ruling out any retrieval architecture that disallows positive SIC deflec-
tions (like independent parallel exhaustive or inhibitory exhaustive processing) as well as those that only allow positive
deflections when accompanied by a negative deflection (like independent serial exhaustive or coactive processing), as sum-
marized in Table 5. The SIC’s for each type of correct rejection (Fig. 4) differ quantitatively but are qualitatively similar. None
demonstrate any credible positive deflections (95% CI of the maximum for SICIþA� is [0, 0.022], for SICI�Aþ is [0, 0.040], and for
SICI�A� is [0, 0.032], all including zero), and SICIþA� ðtÞ demonstrates a credible negative deflection (95% CI of the minimum is
[�0.117, �0.019]). We can therefore rule out any retrieval arrangements that prohibit negative SIC’s for negative responses
(see Table 5). In answer to question 1a, the SIC’s for each pair type imply that item and associative information are retrieved
in parallel, not one after the other (serially), and that if there are interactions, they serve to mutually reinforce matching item
and associative information (see Table 5).

4.2.2. Combining matching and mismatching information
While the SIC characterizes how item and associative retrieval interact as strength is varied within a pair type, a different

function describes how retrieval dynamics differ between pair types. This function is the capacity assessment function,
adapted from Eq. (2) in Townsend and Altieri (2012), also termed the ‘‘integration” function (Altieri, Townsend, &
Wenger, 2014). The assessment function compares RT distributions when both item and associative information are congru-
ent (IþAþ or I�A�) to when they conflict (IþA� or I�Aþ).3 We can therefore compute an assessment function for both correct
acceptance responses (ACAðtÞ) and correct rejections (ACRðtÞ):
his sense, it is closely related to the ‘‘resilience function” (Little, Eidels, Fific, & Wang, 2015).
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where each F �ðtÞ is the cumulative RT distribution function to the corresponding pair type and each P� is the probability of
giving a positive response to pairs of that type.

Although the assessment function has a complicated form, it asks a simple question: When item and associative informa-
tion are congruent, does this aid processing more (assessment greater than one) or less (assessment less than one) than
would be expected if the two kinds of information were retrieved separately in parallel and did not interact? The numerator
represents the amount of work needed for a participant to make a correct response to a congruent pair by time t under the
assumption that they always treated the two information sources separately and processed them in parallel, making a
response (either positive or negative) on the basis of whichever is retrieved first. The denominator reflects the observed work
done by time t to make a correct response when item and associative information are actually congruent. If this ratio is
greater than one, congruent processing ismore efficient (i.e., yields higher accuracy in less time) than would be expected from
parallel independent processing. If the assessment function is less than one, congruent processing is less efficient than would
be expected from parallel independent processing, implying a limited ability to combine congruent item and associative
information.

Although we refer the reader to Townsend and Altieri (2012) and Altieri et al. (2014) for in-depth discussions of the
assessment function, we make some remarks here that will hopefully aid the reader’s intuition. If the assessment function
equals one throughout, then item and associative information are processed independently, in parallel, with a self-
terminating stopping rule—this follows from the definition of the function, as described above. If processing is extremely
error-prone, however, this low accuracy can result in an assessment function less than one even under independent parallel
self-terminating processing. Serial self-terminating processing can lead to assessment functions that deviate from one if the
order in which item and associative information are retrieved allows decisions to be made on the basis of the first retrieved
piece of information (e.g., if item information tends to be retrieved earlier, one would not need to retrieve associative infor-
mation to reject a I�A� pair). Facilitatory and/or inhibitory interactions can yield assessment functions that are either greater
or less than one depending on the degree to which processing is error-prone; interactions can not only enhance information
leading to a correct response (assessment greater than one), they may also amplify noise (assessment less than one). Finally,
we remark that exhaustive decision rules, regardless of the other aspects of the retrieval architecture, often lead to assess-
ment functions that are greater than one, owing to the fact that exhaustive processing is exceptionally inefficient in incon-
gruent situations.

As with the SIC, we compute each sample n ¼ 1 . . .10;000 of each assessment function using the estimated RT distribu-
tions and response probabilities on that sample. Plugging these into the equations above (and dropping the ½n� index for clar-
ity), each sample of the assessment function is given by
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where Fþ

�� ðtÞ and F�
�� ðtÞ are the CDF’s for response times when a positive or negative response is given in that condition, Sþ�� ðtÞ

and S��� ðtÞ are the survivor functions (one minus the CDF) for response times when a positive or negative response is given in
that condition, and P�� is the probability of giving a positive response in that condition.

Once again, different processes make different predictions about the form that the assessment function can take, as
shown in Fig. 3C. After an initial period in which both observed assessment functions begin near one, the assessment func-
tion for correct acceptance responses is credibly greater than one, while the opposite is true for correct rejections (Fig. 5). In
answer to question 2, when both item and associative information match the contents of memory, processing is particularly
efficient, more so than would be expected if the two kinds of information were processed independently in parallel. The
same is not true for mismatching item and associative information—mismatches are processed less efficiently than indepen-



Fig. 3. Different retrieval architectures yield different qualitative predictions for response dynamics. (A) Schematic depictions of possible retrieval
architectures. Match (Fþ) and mismatch (F�) information from item (I) and associative (A) retrieval processes are fed into a decision rule (D) which may
either be self-terminating (ST) or exhaustive (EX). Depending on the decision rule and retrieval architecture, the survivor interaction contrast (SIC; B) and
assessment functions (C) can take different qualitative forms. For illustrative purposes, (B and C) depict an ‘‘envelope” of possible forms for each
architecture ranging from the greatest possible positive deflection to the greatest possible negative deflection, with time along the horizontal axes. Labels
on the top row are with respect to positive responses, such that facilitatory processing for positive responses is inhibitory processing for negative responses.
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dent parallel processing. Overall, it appears that mismatch information is inhibited whereas match information is mutually
facilitatory.

4.2.3. Conclusions from SFT
Participants can only make positive or negative responses, which are the converse of each other. Whenever positive

responses are self-terminating, negative responses must be exhaustive, and vice versa; facilitation of positive responses is
inhibition for negative responses, and vice versa. Therefore, there are nine possible combinations of retrieval processes, as
shown in Table 5. By comparing the qualitative properties of the observed SIC and assessment functions with those predicted
by each type of processing, we find that the only set of retrieval processes that is fully consistent with the observed SIC and
assessment functions is that in which positive responses arise from facilitatory exhaustive retrieval of item and associative
information.4 In other words, match information is mutually reinforced between item and associative retrieval while mismatch
information arises separately from these two sources and races against the pooled match evidence, enabling negative responses
to be made on the basis of either type of mismatch, as depicted in Fig. 8.

4.3. Individual modeling

While the description afforded by SFT has the virtue of being derived from purely qualitative distinctions between broad
model classes, this analysis is limited by its reliance on group distributions which could obscure variability between individ-
uals. In addition, while SFT provides strong evidence of interactions between item and associative information, it cannot
easily answer question 1b, namely, whether interactions occur during retrieval or are a byproduct of how item and associa-
tive information are stored in memory, or both. To address these issues and answer this outstanding question, we augment
our SFT analysis by jointly modeling accuracy and response time for each individual within a Linear Ballistic Accumulator
(LBA) framework (Brown & Heathcote, 2008). LBA models have been useful for corroborating conclusions derived from
SFT (Donkin, Little, & Houpt, 2014; Eidels, Donkin, Brown, & Heathcote, 2010) and have the advantage of jointly modeling
both accuracy and response time for both correct and error responses.5 In addition, the LBA modeling framework allows a nat-
ural way to express each of the seven possible parallel retrieval architectures6 and to separately estimate the contributions of
interactions prior to retrieval versus those during retrieval.

4.3.1. Linear ballistic accumulator models
An LBA models decision making by assuming that evidence begins at a value sampled at uniform between zero and As,

where As varies for each participant s, as shown in Fig. 6. Evidence then accumulates at a fixed rate v sampled from a normal
distribution on each trial with variance 1; the match evidence distribution has mean dþ

ijs, with the mean depending on item
4 SIC’s for error responses are also consistent with this type of processing; see Appendix B.
5 While this is also a feature of our hierarchical Bayesian approach to estimate RT distributions, the LBA is much more strongly constrained in this respect.
6 The LBA does not readily permit serial models, however our SFT results already argue against the two forms of independent serial processing.
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strength i, associative strength j, and subject s, while mismatch evidence has mean d�
ijs. The LBA finishes when (if) the total

amount of accumulated evidence reaches a threshold—Bþ
s for a match accumulator or B�

s for mismatch—for each participant
s.

We assume that up to four LBA’s operate on each trial corresponding to item match, item mismatch, associative match,
and associative mismatch information. These four accumulators are, respectively, associated with finishing-time density
functions fþI ðtÞ; f�I ðtÞ; fþA ðtÞ, and f�A ðtÞ (distribution functions are denoted with capital F’s). To properly identify the model,
we assume the evidence for the two match accumulators is sampled from the same distribution (with mean dþ

ijs), similarly

for the two mismatch accumulators (with mean d�
ijs). Both match accumulators have the same threshold Bþ

s and both mis-
match accumulators have the same threshold B�

s while all accumulators have the same start variability parameter As and
residual non-decision time Rs. Finally, we allow that some trials might be contaminants with probability cs; on a contami-
nant trial, a participant gives a positive response with probability 0.25 (i.e., the true IþAþ base rate) at a uniform time sam-
pled between 0.2 and 5 s.

As in our SFT analyses, different retrieval architectures entail that different accumulators interact. If two accumulators
interact during retrieval, their corresponding parameters are pooled via addition. For example, if the two match accumula-
tors interact, the starting level of the pooled accumulator is sampled at uniform between zero and 2As, the evidence rate is
sampled from a distribution with mean 2dþ

ijs and variance 2, and accumulation terminates when evidence reaches 2Bþ
s . To

designate the pooled match accumulator, we drop the I and A subscripts, i.e., fþðtÞ is its finishing-time density. In this
way, we can specify the likelihood of a ‘‘yes” response at time t for each type of parallel retrieval architecture:
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where ‘‘COA” is short for ‘‘coactive”, and for the other models, the first letter denotes independent parallel (‘‘P”), facilitatory
(‘‘F”), or inhibitory (‘‘I”) and the next two letters give the stopping rule for ‘‘yes” responses (‘‘ST” for self-terminating, ‘‘EX” for
exhaustive). Likelihoods for negative responses are obtained by switching the þ and � superscripts and the stopping rule (if
‘‘yes” responses are self-terminating, ‘‘no” responses must be exhaustive and vice versa). We estimated each model param-
eter—including which retrieval architecture was used—for each individual according to the hierarchical Bayesian model
described in Appendix D. The model was implemented in JAGS (Plummer, 2013), which was used to obtain 10,000 posterior
samples split over 10 parallel chains after 2000 iterations of ‘‘burn-in” each.

Our subsequent analyses focus on the drift rates and retrieval architectures inferred using this model, since these param-
eters are those that directly address questions of theoretical interest. For completeness, however, we report estimates of the
other model parameters (boundary separation, start-point variability, etc.) in Table D.1.

4.3.2. Interactions prior to retrieval
It is possible that item and associative information could be encoded or stored in such a way that they are correlated,

irrespective of the retrieval architecture. For example, if strongly encoded item information makes it easier to encode asso-
ciative information (or vice versa), this would constitute a facilitatory interaction at storage that would be separate from any
facilitation that might occur as a function of the architecture of the retrieval processes. Eidels et al. (2011) termed this a dis-
tinction between ‘‘pre-accumulator” and ‘‘post-accumulator” interactions, where ‘‘pre-accumulator” in our case applies to
processes like storage that occur prior to retrieval while ‘‘post-accumulator” applies to the retrieval processes themselves.
These two kinds of interaction are explicitly disentangled within our LBA framework, which separates retrieval architec
ture—‘‘post-accumulator” interactions that result from pooling information across accumulators—from the inputs to that
architecture—the drift rates that reflect the evidence retrieved from memory as well as any ‘‘pre-accumulator” interactions.
Therefore, in this section we examine the posterior distributions of drift rates to assess the evidence for interactions prior to
retrieval. In the next section, we examine the posterior probabilities assigned to each retrieval architecture, which provides
evidence for interactions during retrieval.

The drift rates that serve as inputs to the retrieval process can be characterized in terms of the total quantity of memory
evidence as well as the quality of that evidence. For each combination of item strength i, associative strength j, and subject s,
the overall quantity of retrieved evidence is represented by the sum of the drift rates for the positive (match) and negative
(mismatch) accumulators: dþ

ijs þ d�
ijs. The higher this quantity, the posterior distributions of which are given in Table 6, the

more retrieved memory evidence is flowing into the system. The difference in drift rates reflects the quality of that evidence.
By analogy with d0 in signal detection, we quantify the retrieved memory evidence as the degree to which retrieval favors a
positive versus negative recognition response, i.e., dþ

ijs � d�
ijs. To the extent that this quantity is greater than zero, memory evi-



Fig. 4. SIC functions for correct responses. Solid lines are posterior means while shaded regions are 95% credible intervals.

Table 5
Qualitative properties of SFT measures, indicated whether positive (Pos.) and/or negative (Neg.) deflections are allowed by a particular retrieval architecture.
Bold text indicates that the observed function is consistent with what is allowed. Asterisks for independent serial exhaustive and coactive processing refer to
the fact that they allow positive deflections in the SIC only if there is a corresponding negative deflection (and vice versa for independent serial exhaustive
processing).

Retrieval processes SIC Assessment

Correct
acceptance

Correct
rejection

Correct
acceptance

Correct
rejection

Correct acceptance Correct rejection Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg.

Independent serial self-terminating Independent serial exhaustive Yes Yes Yes⁄ Yes⁄ Yes Yes Yes No
Independent serial exhaustive Independent serial self-terminating Yes⁄ Yes⁄ Yes Yes Yes No Yes Yes
Independent parallel self-terminating Independent parallel exhaustive Yes Yes No Yes No Yes Yes No
Independent parallel exhaustive Independent parallel self-terminating No Yes Yes Yes Yes No No Yes
Facilitatory self-terminating Inhibitory exhaustive Yes Yes No Yes Yes Yes Yes No
Facilitatory exhaustive Inhibitory self-terminating Yes No Yes Yes Yes Yes Yes Yes
Inhibitory self-terminating Facilitatory exhaustive Yes Yes Yes No Yes Yes Yes Yes
Inhibitory exhaustive Facilitatory self-terminating No Yes Yes Yes Yes No Yes Yes
Coactive Coactive Yes⁄ Yes Yes⁄ Yes Yes Yes Yes Yes
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dence favors a positive response, and to the extent that it is less than zero, memory evidence favors a negative response. The
posterior distributions of average retrieved memory evidence for each pair are given in Table 7.

As shown in Table 6, the total quantity of retrieved evidence is generally greater for IþAþ pairs than for other pair types
which all have comparable levels of total input (compare the upper left quadrant of Table 6 to the other three quadrants).
This suggests the presence of an interaction, in the sense that the total input to retrieval is not an additive function of the
strengths of the item and associative information in a pair. As in analysis of variance, we can compute the average degree to
which item and associative strength interact to affect total retrieved evidence as:
Means dþ
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h i
�Meanijs dþ

ijs þ d�
ijs

h i
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ijs þ d�
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h i
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h i
;

i.e., the average deviation in summed drift rates from what would be expected if they were a purely additive function of item
strength i and associative strength j. As shown in Table 8, there are several credible deviations from additivity: Total
retrieved evidence is greater than would be expected from additivity when item and associative information agree (IþAþ

and I�A�) and is less when they disagree (IþA� and I�Aþ).
We can ask the same question regarding the quality of retrieved memory evidence: The average degree to which item and

associative strength interact to affect evidence quality is given by
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i.e., the average deviation in drift differences from what would be expected if drift differences were a purely additive func-
tion of item strength i and associative strength j. As shown in Table 9, retrieved evidence is higher than expected from addi-
tivity for IþAþ

; IþA�, and I�Aþ pairs but lower than expected for I�A� pairs (recall that lower numbers indicate greater support
for a negative response and higher numbers indicate greater support for a positive response, which is an error for I�A� pairs).

These analyses thus provide some evidence that item and associative information interact prior to retrieval, as reflected in
the inputs to the retrieval architecture as modeled within the LBA framework. These interactions could, in part, reflect our
experimental design, which entails repeating whole pairs to increase associative strength. Such repetitions are likely to
increase the strength of the component items as well; this is evident above, in that for IþAþ pairs, the quality of retrieved
memory evidence is particularly enhanced by repeating whole pairs (Aþ

H versus Aþ
L ). There is no sign, however, that repeating

the components of a pair separately (presenting AA or BB for IþH pairs) interfereswith whole pair (AB) associations. Such inter-
ference could manifest in two ways that would reflect either diminished speed or accuracy for IþH pairs: first, as a negative
interaction for IþHA

þ
L or IþHA

þ
H pairs in either retrieval speed or memory evidence, neither of which we found; second, as a neg-

ative retrieval speed interaction for IþHA
�
L or IþHA

�
H pairs or positive memory evidence interaction for those same pair types,

neither of which we found (recall that positive memory evidence would lead one to falsely recognize an IþA� pair). We note,
however, that form of these interaction analyses depends on the assumption that memory evidence can be characterized as
Gaussian distributions on an interval scale. Although this assumption yields a good account of our data (Fig. D.2), it is log-
ically possible to allow more esoteric distributions (e.g., Jones & Dzhafarov, 2014) which would entail different ways of mea-
suring the presence of drift rate interactions. Finally, we note that because all retrieval architectures take the same drift rates
as inputs, the above analyses are agnostic with respect to how these inputs subsequently interact during retrieval.

4.3.3. Interactions during retrieval
Even allowing for potential interactions prior to retrieval, there remains overwhelming evidence for interactions during

retrieval. Retrieval interactions are indicated by the processing architecture estimated for each participant. The posterior
probability that a participant is best described by a particular LBA retrieval architecture is shown in Fig. 7, with the vast
majority of participants (112 out of 118) best described by facilitatory exhaustive processing for positive responses (with
corresponding inhibitory self-terminating processing for negative responses)—the same model supported by SFT. Addition-
ally, we demonstrate in Appendix D that interactions prior to and during retrieval do not trade-off with one another and
reflect independent contributions to the retrieval processes modeled by the LBA. Thus, in answer to question 1b, while it
is possible that interactions occur between item and associative information prior to retrieval, it is also the case that item
and associative memory interact during retrieval. These results are a strong validation of the conclusions drawn from SFT
and imply that facilitatory retrieval of item and associative information is a relatively ubiquitous characteristic of human
memory.

5. Discussion

Item and associative information are retrieved concurrently, with positive memory evidence arising from a pooled match
between the item and associative information within a test pair. This conclusion was based on model-independent qualita-
tive properties of response dynamics, as measured by tools from SFT (Townsend & Altieri, 2012; Townsend & Nozawa, 1995),
and was confirmed by quantitative modeling of individuals. This effort not only yielded important results about human
memory, it also demonstrated how SFT can answer important psychological questions in domains where it has previously
been difficult to apply, particularly when coupled with Bayesian estimation of RT distributions (for further developments
along these lines, see Houpt, MacEachern, Peruggia, Townsend, & Van Zandt, 2016). After summarizing the final supported
model of item and associative retrieval, we delve more deeply into the potential generality of this model and the broader
implications of the model and the methods we used to identify it.

5.1. Final supported model

Considering the literature and the results presented here, we are left with a well-constrained account of item and asso-
ciative memory, depicted schematically in Fig. 8: Item and associative information are represented in a separable fashion,
either in separate memory stores or as separate features of a single memory trace. Although item information may be avail-
able earlier than associative information, both kinds of information are eventually retrieved simultaneously and interact
with one another. The degree of match is based on an interactive, holistic comparison of both item and associative features
to memory while the degree of mismatch is based on separate assessments of item and associative mismatch. These two
kinds of mismatch information accumulate in parallel with the pooled match and the final decision (for the decision rule
needed in the present paradigm) is based on whichever of these processes finishes first. In the remainder of the Discussion,
we consider the generality of this account, how it meshes with extant results, and how it can help guide further empirical
work and theoretical developments.



Fig. 5. Capacity assessment functions for correct responses. Solid lines are posterior means while shaded regions are 95% credible intervals.

Fig. 6. Diagram depicting a single linear ballistic accumulator (LBA) and associated parameters.
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5.2. Generality

Our goal is to constrain theories of memory in general, rather than theories of memory for just particular classes of stimuli
or particular tasks. Although we found broad support for a model in which matching item and associative information are
processed holistically while mismatching information is processed separately, we must consider the generality of these
results and the methods used to reach them.

5.2.1. Stimuli
Memory for items and associations is often studied using verbal materials, so is it possible that different processes under-

lie memory for words than memory for images? One potential difference between images and words is that while partici-
pants have usually encountered stimulus words prior to the experiment, they would not have seen any of our stimulus
images before; as a result, context could be a more important cue for retrieval of verbal stimuli as opposed to images. How-
ever, because our images were all commonplace scenes, participants could be expected to have encountered the content of
each image (e.g., trees, clouds, cars, buildings, furniture, etc.) prior to the experiment, necessitating a role for episodic context
during recognition. Furthermore, the contexts in which participants typically experience either verbal or image content is as
part of meaningful continuous interactions with text, speech, objects, and scenes, in contrast to the disconnected, punctate
manner with which such stimuli are presented within a typical memory experiment (Cox & Shiffrin, in press). As a result, the
experimental episodic context can be expected to be equally distinct from typical pre-experimental experience for both
classes of stimuli.

Even if memory for individual words and images are not qualitatively different, it may be that associations between
words are encoded in an explicit conceptual manner (e.g., by imagining a sentence connecting the two words) whereas
image associations may be stored differently, perhaps as another image. Our design precludes the possibility that image pairs
can be easily encoded as just another image, since the two images in a pair were assigned different random vertical offsets on
each presentation (e.g., between study and test). If participants were to try to encode the image pair as a larger image, they
would have to imagine aligning the two halves themselves, in essence creating a new ‘‘mental image”. Such mental imagery
has been found to be a strong predictor of memory for words and word pairs as well (Bower, 1970; McGee, 1980; Paivio,
1969), suggesting that word and image associations, to the extent that they are encoded correctly, may not be so different
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after all. Finally, if image associations were processed as just another, albeit larger, image, there would be no reason for mis-
matching item and associative information to be processed separately.

Verbal stimuli would make it difficult to implement our full double factorial design. The difficulty lies in forming I�Aþ

pairs, pairs that preserve associative information but disrupt item information. One possibility would be to use words with
well-defined relations (e.g., foot-shoe) and replace them with words that share a similar relation (e.g., hand-glove), but this
would seem to restrict the available stimuli to a fairly small set. A less restrictive approach would be to use random word
pairs (e.g., baby-voyage) and replace them with synonyms (e.g., infant-journey) under the assumption that the overlapping
semantic features between the component words would yield similar relational properties in each case. Although within-
pair semantic similarity has been found to yield greater rates of both correct and false recognition of word pairs (Greene
& Tussing, 2001), it is not clear whether preserving only a portion of the semantic features of each word would be very effec-
tive in preserving any associative information. Images from the same scene preserve both low-level visual features (e.g., color
distribution) and high-level semantics (scene content or ‘‘gist”; Andermane & Bowers, 2015), whereas synonymous words
tend to share only high-level features but have different low-level features (spelling/pronunciation). We have recently car-
ried out experiments in our lab that study the extent to which event associations depend on low- or high-level features of
both words and images, and consider this a productive avenue to travel.

5.2.2. Tasks
Given that item and associative information are retrieved in parallel, that they facilitate rather than compete with one

another, and that interactions at retrieval occur regardless of potential correlations prior to retrieval (e.g., at storage), we
expect our conclusions apply generally across a variety of memory tasks. Tasks that require retrieval of only one kind of
information (e.g., pure item recognition or pure associative recognition) are special cases of our paradigm, and to the extent
that task-irrelevant information is retrieved anyway, it will act to facilitate correct recognition (Tulving & Thompson, 1973).
We do expect, however, that different tasks may entail different stopping rules. For example, in a dual-item recognition task
where rearranged IþA� pairs did not need to be rejected, we would expect that participants, to the extent that they follow
instructions, will only use item mismatch to reject a pair while an associative match, if present, would continue to facilitate
item recognition. Exactly this result has been found (Clark & Shiffrin, 1987; Cohn & Moscovitch, 2007; Gronlund & Ratcliff,
1989), even when associative encoding is discouraged (Jou, 2010). In tasks that require separate judgments for the item and
associative content of a pair (Buchler et al., 2008; Buchler, Faunce, Light, Gottfredson, & Reder, 2011; Hockley & Cristi,
1996b), participants could rely on the different mismatch signals to make their judgments, although the holistic match
would continue to introduce a bias, exactly as has been reported.

One facet of memory that we did not explicitly investigate in this study was interference between competing entities in
memory. Interference for items is typically studied by simply increasing the number of items stored in memory, which leads
to moderate decreases in the ability to discriminate between studied and unstudied items (Murnane & Shiffrin, 1991). For
associations, interference is typically investigated in terms of ‘‘fan”, i.e., the number of pairs that contain an overlapping ele-
ment (Anderson, 1983a), such that the ability to tell whether a pair is intact or rearranged is impaired when the pair contains
an item that has appeared in many pairs during study (Wickelgren & Corbett, 1977). While we found no evidence that self-
pairs (AA and BB) interfered with whole pairs (AB) in this way, we would expect that presenting overlapping pairs (e.g., AC,
AD) would selectively interfere with the retrieval of associative mismatch information and leave item mismatch retrieval
unaffected (assuming equal item frequency), a pattern that has been reported before using accuracy measures (Aue et al.,
2012; Buchler et al., 2008, 2011; Criss & Shiffrin, 2004, 2005). It is not immediately clear to us whether overlapping pairs
would also interfere with the retrieval of a holistic match; since match information arises jointly from both item and asso-
ciative sources, it seems likely that interfering associations could intrude on the holistic match, but additional study would
be needed to decide this question.

Finally, we note that our focus was on the kinds of association stored via co-occurrence, which is necessarily episodic.
Semantic associations may have different properties (Dosher, 1984), but as we argue below, learning such associations is
usually predicated on the storage and retrieval of more basic event associations, and the interactions we found between item
and associative retrieval can help us understand the relationship between episodic and semantic associations.

5.2.3. Systems factorial technology
Although our primary interest was to understand how item and associative information are retrieved from memory, pur-

suing this interest made extensive use of Systems Factorial Technology, even extending it via novel analyses (using Bayesian
estimation of response time distribution) and to novel predictions regarding interactive processes. We expect that our exper-
imental and analytical methods can be easily exported to other domains within and beyond the study of memory. Regarding
predictions for interactive systems, while we were able to make some modest analytic predictions regarding interactive par-
allel systems, the complexity of such systems forced us to explore many of them via simulation, as described in Appendix A.
Although these explorations were quite thorough, they cannot be as definitive as analytic proofs, which remain an active
area of exploration. For example, while the analytic form of the SIC is known for some classes of coactive system (Fific
et al., 2008; Houpt & Townsend, 2011; Townsend & Nozawa, 1995), there as yet is no general proof that covers all coactive
systems, let alone those with more complex interactions of the kind we considered. While the converging evidence from our
various analyses and their relation to other results in the literature (as discussed both above and below) puts our conclusions



Table 6
Posterior modes and 95% credible intervals (in parentheses) of the quantity of retrieved evidence as
assessed by the sum of the match and mismatch LBA drift rates. Shaded cells indicate intact IþAþ

pairs, which should be given a positive response.
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regarding memory on firm footing, our efforts also contribute to the ongoing project to understand the qualitative signatures
of different cognitive systems and to develop experimental means to detect them (Eidels et al., 2011; Little, Nosofsky, &
Denton, 2011; Townsend & Wenger, 2004; Yang, Fific, & Townsend, 2014).

5.3. Implications

We now consider some of the broader implications of the account of item and associative retrieval inferred from the pre-
sent study.

5.3.1. Are item and associative retrieval independent?
We can definitively rule out independence of item and associative retrieval. The assumption of independence lies at the

core of many popular views of item and associative retrieval, including the process dissociation procedure (Jacoby, 1991),
mixture analysis of ROC curves (Yonelinas, 1997), and the analysis of additive ERP components (Rugg & Curran, 2007).
Because this assumption is violated, any conclusions drawn within those frameworks are invalid with respect to item and
associative retrieval (see also Curran & Hintzman, 1995; Hillstrom & Logan, 1997). While it is logically possible for this lack
of independence to arise from independent item and associative retrieval processes operating on strongly correlated mem-
ory representations, our individual modeling results render this interpretation untenable, since interactions at retrieval were
strongly supported even in a model that allows correlations prior to retrieval.

Many of the above procedures—rendered invalid by the lack of item and associative independence—have been used to
support a distinction between a ‘‘familiarity” process that retrieves item information and a ‘‘recollection” process that
retrieves associative information. Although these processes were originally conceived as operating independently
(Mandler, 1980), many modern applications of these terms have effectively abandoned that assumption, with associative
information being available via both familiarity and recollection (Parks & Yonelinas, 2015) and ERP signals thought to be
pure reflections of familiarity and recollection actually supporting both item and associative retrieval (Speer & Curran,
2007). Given that item and associative information are separable and yield different mismatch signals, our results are not
inconsistent with studies that begin from the assumption of distinct familiarity and recollection processes. Rather, they pro-
vide a more theoretically coherent set of constructs with which to describe these prior results: to the extent that different
behavioral or neural signals are found to be associated with item and associative information, they reflect the operation of
one or the other mismatch accumulator and, potentially, different contributions to the holistic match signal.

5.3.2. What is associative information?
Throughout this research, we have identified associative information only in a functional sense, that is, associative infor-

mation is whatever gets strengthened by repeating an intact pair during study (going from Aþ
L to Aþ

H) that is separate from
what gets strengthened by repeating an item during study (going from IþL to IþH). Although it seems reasonable to assume that
item information refers to the conceptual (and, perhaps, perceptual) content of the item event, it is less clear what associa-
tive information could be, independent of the items being associated. This kind of question has persisted in psychology for
some time (Asch, 1969; Köhler, 1941), and requires us to reiterate that, although many theoretical constructs have been
given the name ‘‘association”, our focus is on associations in episodic memory, that is, the information that is encoded as
a result of events occurring nearby in time and space.

Because mismatching associative information can be tracked separately from mismatching item information, the two
kinds of information must be ‘‘separable” in some sense, even if they are not qualitatively dissimilar. Models of episodic
memory offer many approaches toward representing associations in a form that is separable from items, such as links in
a network (Anderson, 1983b; Gillund & Shiffrin, 1984), concatenation of item features (Hintzman, 1988; Shiffrin &
Steyvers, 1997), features added to memory traces (Cox & Shiffrin, in press; Criss & Shiffrin, 2004), outer products
(Humphreys, Bain, & Pike, 1989), or convolutions (Murdock, 1982). These models offer little guidance, however, regarding
how those representations actually enter into memory in the first place. Pre-existing semantic or similarity relations
between items lead to stronger encoding of an association (Dosher, 1984; Dosher & Rosedale, 1991; Greene & Tussing,
2001; Thomson & Tulving, 1970), and interference only occurs between pairs that are made of the same types of items



Table 7
Posterior modes and 95% credible intervals (in parentheses) of the quality of retrieved memory evidence as assessed by
the difference between the LBA drift rate for positive (match) accumulators and negative (mismatch) accumulators.
Thus, values greater than zero indicate support for a positive response while those less than zero indicate support for a
negative response. Shaded cells indicate intact IþAþ pairs, which should be given a positive response.
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(e.g., word-word versus word-face pairs; Criss & Shiffrin, 2005), such that it is clear that associative information depends at
least in part on the information contained in the associated items, especially relational features and features shared between
items. While memory models of all stripes could easily implement this phenomenon, none of them predict it a priori.

One way by which associative information could be derived from items, while still remaining separable, is via unitization
(Czerwinski, Lightfoot, & Shiffrin, 1992; Shiffrin & Lightfoot, 1997; Smith & Haviland, 1972). Unitization refers to the creation
of a novel entity that is ‘‘more than the sum of its parts”, just as a word is more than a collection of letters or a painting more
than a collection of brushstrokes, a topic often studied in Gestalt psychology (Wagemans, Elder, et al., 2012; Wagemans,
Feldman, et al., 2012) as well as in the study of the perception of both simple and complex stimuli (Townsend & Wenger,
2015). The formation of unitized representations may be encouraged by semantic elaboration of either word pairs (Graf &
Schacter, 1985; Prior & Bentin, 2003, 2008) or image pairs (Kan et al., 2011), resulting in the storage of stronger associative
information. As in the present study, repetition of intact word pairs has been found to enhance memory for their association
beyond any benefit from repeating the component items (Kilb & Naveh-Benjamin, 2011; Parks & Yonelinas, 2015), suggest-
ing that associative information is a unitized representation of the complete pair that can be strengthened separately from
representations of items. We will return to the possibility that associative information results from unitization below.

5.3.3. What is associative retrieval?
Although item and associative information are can be represented separately, the degree of match between item and

associative information is pooled into a single holistic signal. For them to be combined this way means that item and asso-
ciative retrieval processes must yield similar outputs. This is inconsistent with theories that posit qualitatively different
mechanisms for item and associative retrieval, including most dual-process theories which assume either that item and
associative retrieval are independent (via separate ‘‘familiarity” and ‘‘recollection” processes Yonelinas, 1997) or that asso-
ciative retrieval can only serve to suppress an itemmatch (via ‘‘recall-to-reject”; Rotello & Heit, 2000) rather than enhance it.
At the same time, the ability for mismatch information to arise separately from item and associative retrieval is not easily
accommodated by either single-process or summed dual-process models (Kelley & Wixted, 2001) which entail pooling of
both match and mismatch information into a univariate ‘‘memory strength”.

The apparent asymmetry between pooled match and separate mismatches is, however, consistent with functional
accounts of the different subregions of the hippocampus (Kumaran & Maguire, 2009) and with results in other memory
domains in which match and mismatch information are tracked separately, such as short-term recognition (Mewhort &
Johns, 2000) and categorization (Stewart & Brown, 2005; Tversky, 1977). It is also in line with likelihood-based models of
memory which, in contrast to strength models, give different weight to match and mismatch information (McClelland &
Chappell, 1998; Shiffrin & Steyvers, 1997).

Taken together, we hypothesize that associative retrieval occurs similarly to item retrieval in that it consists of comparing
the associative information in the test pair to that stored in memory. In both cases, the output is a set of signals reflecting the
degree to which each type of information matches or mismatches the contents of memory. Item and associative match infor-
mation could be mutually facilitatory in two ways: first, by cross-talk between between two otherwise separate match accu-
mulators (Townsend & Wenger, 2004); second, by computing a match using a compound cue that combines both item and
associative information and compares them jointly to memory (Dosher & Rosedale, 1989, 1997; Ratcliff & McKoon, 1988). In
the first case, item and associative matches are still processed separately but, according to our results, these processes com-
municate so strongly with one another that they effectively act as a single process. In the second case, a single match process
receives a single holistic input signal that jointly reflects item and associative match, a kind of partial coactivation (partial
because only match, not mismatch, processes are combined). Unfortunately, it is unlikely that one can experimentally dis-
tinguish strongly-interactive-but-separate processes from a single holistic process, though this does not preclude testing
specific implementations of these two types of facilitatory model (Colonius & Townsend, 1997). One possible test relies on
the fact that a holistic match can only yield a decision on the basis of combined evidence whereas separate channels can
result in separate decisions; as a result, a holistic match should yield similar performance regardless of the decision rule
whereas separate processes could yield different performance (Townsend & Wenger, 2004). The fact that associative infor-
mation intrudes even when decisions need only be based on items (Clark & Shiffrin, 1987; Tulving & Thompson, 1973) and
vice versa (Buchler et al., 2008) suggests that a holistic match is the more likely of these two candidates.



Table 8
Posterior modes and 95% credible intervals (in parentheses) of the interactions between item and associative strength on
total drift rates, i.e., the total quantity of retrieved memory evidence. Bold text indicates that the 95% credible interval
excludes zero and shaded cells indicate intact IþAþ pairs, which should be given a positive response.
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We address one final point demonstrated in prior studies of retrieval dynamics, namely, that associative retrieval is
slower than item retrieval (Gronlund & Ratcliff, 1989; Rotello & Heit, 2000). From the viewpoint that associative information
arises from the unitization of item information, it is clear that associative retrieval depends on having sufficient item infor-
mation for a unit to be formed ‘‘on the fly” within the trial. Thus, associative retrieval must be slower than item retrieval,
which is consistent with the use of early item information as a baseline or ‘‘gate” for later associative decisions, as mentioned
in the Introduction (Cox & Shiffrin, in press; Criss & Shiffrin, 2005; Hockley, 1991). These considerations also make it very
likely that the form of parallel interactive processing that takes place between item and associative retrieval is a type of
‘‘continuous-flow” in which item and associative retrieval may begin at different times but then proceed concurrently.
Although qualitative properties of many continuous-flow systems remain to be worked out (see Liu, 1996; Schweickert,
1989; Townsend & Fikes, 1995), in general they represent a hybrid of serial and parallel processing and, as such, can demon-
strate behavior characteristic of either type. For example, the cascade model, in which processing stages occur in a fixed
order but overlap in time and operate in parallel (McClelland, 1979), can under certain conditions mimic the properties
of a strictly serial model (Ashby, 1982). Because of their potential complexity, it is likely that empirical tests can only be
made of specific continuous-flow models, rather than the general class (for an example of a continuous-flow model of asso-
ciative recognition, developed prior to the work in this article, see Cox & Shiffrin, in press).

5.3.4. From episodic to semantic associations
Over time, the ability to store and retrieve information about the co-occurrence of events underlies the learning of a great

deal of semantic information, such as word learning (co-occurrence of words and referents; Smith & Yu, 2008; Smith,
Suanda, & Yu, 2014), causal learning (Zacks & Tversky, 2001), and learning whole object representations (Czerwinski
et al., 1992; Gauthier & Tarr, 1997; Nelson & Shiffrin, 2013; Shiffrin & Lightfoot, 1997). In a broad sense, most memory begins
as ‘‘associative” in that events and objects are collections of isolated entities. Only as these collections are re-experienced
many times do the entities merge to become ‘‘items” in their own right. This is precisely the process of unitization described
above, which is why we consider it a natural description of associative information. This transition from associative to item
information—with a concomitant transition from slow to fast retrieval as the unitized representation can be retrieved in toto
rather than constructed ‘‘on the fly”—helps explain why well-learned semantic associations are retrieved more quickly than
novel event associations (Dosher, 1984; Dosher & Rosedale, 1991). Evidence for exactly this kind of representational transi-
tion has been found in the function of perirhinal cortex to encode novel unitized associations, in contrast to other regions
which encode well-learned item information (Cowell, Bussey, & Saksida, 2006, 2010; Haskins, Yonelinas, Quamme, &
Ranganath, 2008; Staresina & Davachi, 2010). In addition, the kind of facilitatory interactions we found between item and
associative retrieval have been implicated in the learning of whole object and category representations (Goldstone, 2000).

5.3.5. Associative deficits in aging
Older adults have been found to show deficits for associative memory, relative to their memory for individual items

(McKoon & Ratcliff, 2012; Naveh-Benjamin, 2000; Ratcliff, Thapar, & McKoon, 2011). These deficits are reduced when the
components of the association are already related, rather than representing a novel association (Naveh-Benjamin,
Hussain, Guez, & Bar-On, 2003), consistent with our suggestion that associative information arises from a unitization process
that transforms pairs into single items with repeated exposure. More pertinent to our results, however, is that the age-
related associative deficit often manifests as an increased tendency to falsely recognize rearranged pairs rather than failure
to recognize intact pairs (Naveh-Benjamin et al., 2009; Old & Naveh-Benjamin, 2008; Rhodes, Castel, & Jacoby, 2008). This
suggests that the age-related associative deficit arises from a malfunction in the process we identified as accumulating asso-
ciative mismatch information. The apparent ubiquity of this malfunction suggests it is not strategic, i.e., it is not merely that
older adults ‘‘choose” not to engage this process, but we leave further investigation for future research.

6. Conclusion

The focus of the present work has been how information about individual events (‘‘items”) and combinations of events
(‘‘associations”) are stored and retrieved from memory. Our conclusion, that item and associative information are stored
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Posterior modes and 95% credible intervals (in parentheses) of the interactions between item and associative strength on
retrieved memory evidence, i.e., the difference between positive and negative drift rates. Bold text indicates that the 95%
credible interval excludes zero and shaded cells indicate intact IþAþ pairs, which should be given a positive response.
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in separable fashion and are retrieved concurrently with matching item and associative information pooled into a single
holistic signal, was derived from careful study of the dynamics with which these kinds of information are retrieved. Although
we have only begun to explore them, the implications of this conclusion are broad, owing to the fact that these processes are
embedded in a memory system that supports cognition and action throughout a lifetime.

Acknowledgments

This work was supported by the National Science Foundation (Grant No. BCS-0951612). We thank Bria Harris and Tommy
Knoerl for their assistance with data collection.

Appendix A. Properties of interacting processes

Because we could not guarantee that our repetition manipulations would selectively influence item and associative
strength, we augmented analytical predictions for the SIC (Townsend & Nozawa, 1995) with simulations that examine
the consequences of pooling between the two processes (for additional simulation results in high-accuracy situations, see
Eidels et al., 2011).

A.1. Simulations

In our simulations, we assume that a single retrieval process is described by a pair of parallel accumulators, one leading
toward a correct response and one leading toward an error. On each unit of time, the correct accumulator is incremented
with probability u and the error accumulator is incremented with probability v. A correct response results when the correct
accumulator accrues BC total counts while an error response results if the error accumulator accrues a total of BE counts; the
first accumulator to reach its criterion determines the response and response time. Accumulators begin with zero counts and
can only accrue counts; counts are never lost. We additionally adopt the simplifying assumption that the probability that the
error accumulator is incremented is inversely related to the probability with which the correct accumulator is incremented
such that v ¼ 0:09� u.

Two independent processes are modeled as two pairs of parallel accumulators of the kind just described. Each process has
its own set of correct and error criteria, B1

C and B1
E for the first process and B2

C and B2
E for the second. In addition, each process

has its own rate of correct accumulation when it is high strength (H) and low strength (L), u1
H and u1

L for the first process and
u2
H and u2

L for the second. For each processing architecture, we obtained predictions from a wide range of parameter values, as
given in Table A.1, in order to establish the range of behavior each architecture could generate.

Analytic simulation results were obtained via matrix methods (Diederich & Busemeyer, 2003). While the precise imple-
mentation depended on the simulated architecture, as described below, the general idea is to define the state space X of the
accumulators and use the increment probabilities u1 and u2 and stopping rule (self-terminating or exhaustive) to determine
the probability of transitioning from one part of the state space xi 2 X to another xj 2 X, expressed via a transition matrix Q.
There are two absorbing states in which the system has finished processing and the transition probabilities are zero: One set
of states RC 	 X corresponds to a correct response, where the appropriate accumulators have reached criterion; another set
RE 	 X corresponds to error responses, where a different set of accumulators have reached criterion. Starting with an initial
state distribution Z0 concentrated entirely over the state where all accumulators have zero counts, we iteratively apply the
transition matrix Zn ¼ QZn�1 from one time-step to the next and track the total amount of probability mass residing in RC and
RE at each time-step, yielding the finishing time distributions FC ½n� and FE½n�.

A.1.1. Independent parallel processing
In the independent parallel model, there are a total of four accumulators corresponding to correct and error information

for each process. Thus, the state space X is defined by four dimensions, 0;B1
C

h i
� 0;B1

E

h i
� 0;B2

C

h i
� 0; B2

E

h i
, where any given

state is defined by the number of counts in each accumulator, xi ¼ m1C ; m1E ; m2C ; m2E
� 	

. For self-terminating processing, the
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absorbing states corresponding to correct responses are those in which m1C ¼ B1
C or m2C ¼ B2

C while either m1E < B1
E or m2E < B2

E . For

exhaustive processing, the absorbing states corresponding to correct responses are those in which both m1C ¼ B1
C and m2C ¼ B2

C

and both m1E < B1
E and m2E < B2

E .

A.1.2. Independent serial processing
Unlike in parallel processing, in serial processing only one pair of accumulators is active at any one time. It is possible that

one process is chosen to be the first process more often; we denote the probability that process 1 goes before process 2 with
parameter k. Interactions occur if the first process provides information to the second process. In such a case, one or both
accumulators continue to accept input from the first process and combine it with the second. Hence our claim in the main
text that interactions entail parallel processing—for at least one accumulator, both processes continue to operate
concurrently.

To obtain predictions for serial processes, we followed a similar approach to parallel processing. We used the samematrix
methods to obtain predictions for the finishing times for each process (i.e., each pair of correct and error accumulators) sep-
arately, conditioned on the order of processing. F11

C ½n� and F11
E ½n� are the finishing time distributions for process 1 when it is

first, F12
C ½n� and F12

E ½n� are the finishing time distributions for process 1 when it is second, F21
C ½n� and F21

E ½n� are the finishing

time distributions for process 2 when it is first, and F22
C ½n� and F22

E ½n� are the finishing time distributions for process 2 when
it is second. Letting lower case f ½n�’s denote the finishing time mass at step n (i.e., the difference F½nþ 1� � F½n�), we can then
express the finishing time distributions under self-terminating (ST) or exhaustive (EX) processing:
FST ½n� ¼
Xn
i¼0

k f 11C ½i� þ
Xi

j¼0

f 11E ½j�f 22C ½i� j�
 !

þ ð1� kÞ f 21C ½i� þ
Xi

j¼0

f 21E ½j�f 12C ½i� j�
 !( )

FEX ½n� ¼
Xn
i¼0

k
Xi

j¼0

f 11C ½j�f 22C ½i� j� þ ð1� kÞ
Xi

j¼0

f 21C ½j�f 12C ½i� j�
( )

:

In all cases, the state spaces for the component processes X1 and X2 are independent of processing order and are defined

over the respective correct and error accumulators, i.e., 0;B1
C

h i
� 0;B1

E

h i
and 0;B2

C

h i
� 0;B2

E

h i
.

Under independent serial processing, the order of processing does not affect either process. When process 1 is operating,
its correct accumulator accrues a count with probability u1 and its error accumulator accrues a count with probability v1,
similarly for process 2.

A.1.3. Facilitatory processing
As mentioned in the main text, when processes are allowed to pool their resources, they must be considered parallel pro-

cesses, since interactions can only occur if the two processes overlap in time. Nonetheless, it is still possible that one process
may begin earlier than the other.

If the processes begin at the same time, there are three accumulators, one corresponding to correct information and two
corresponding to error information. The response threshold for the correct accumulator is B1

C þ B2
C and the probability of

accumulating a count on the correct accumulator is 1� ð1� u1Þð1� u2Þ, i.e., the probability that either process generates

a correct count. The state space X is defined by three dimensions, 0;B1
C þ B2

C

h i
� 0;B1

E

h i
�� 0;B2

E

h i
, where any given state

is defined by the number of counts in each accumulator, xi ¼ mC ; m1E ; m2E
� 	

. For self-terminating processing, the absorbing

states corresponding to correct responses are those in which mC ¼ B1
C þ B2

C while either m1E < B1
E or m2E < B2

E . For exhaustive pro-

cessing, the absorbing states corresponding to correct responses are those in which mC ¼ B1
C þ B2

C and both m1E < B1
E and

m2E < B2
E .

To model interactive systems where one process begins before the other (‘‘continuous-flow” systems), we treat the first
process as if it were the first stage of independent serial processing (thus starting order is governed by probability k, as in
independent processing). The first process is thus allowed to terminate whenever its correct or incorrect accumulator
reaches its respective criterion. If the second process is then engaged (i.e., under an exhaustive stopping rule), the probability
of accumulating a correct count for that process is augmented by the first: although the error accumulator for the second
process accumulates counts as usual, the correct accumulator accrues counts with probability 1� ð1� u1Þð1� u2Þ. Thus,
the first process ‘‘spills over” into the second, acting to facilitate the second process even though they start at different times.

A.1.4. Inhibitory processing
As with facilitatory processing, we consider two situations: one in which both processes begin at the same time and

another in which they can start at different times.
If the processes begin simultaneously, there are three accumulators, one corresponding to error information and two cor-

responding to correct information. The response threshold for the error accumulator is B1
E þ B2

E and the probability of accu-
mulating a count on the error accumulator is 1� ð1� v1Þð1� v2Þ, i.e., the probability that either process generates an



Fig. 7. Posterior probability that each participant uses a particular retrieval architecture. Labels are with respect to the processes leading to positive
responses.

Fig. 8. A schematic description of the architecture by which item (separate pieces ‘‘A” and ‘‘B”) and associative information (joined piece ‘‘AB”) are
retrieved. Item and associative information that match the contents of memory are pooled into a holistic match that is used as the basis for positive
recognition decision (‘‘yes” responses) while mismatching information is processed separately for the two sources, with either kind of mismatch capable of
resulting in a negative recognition decisions (‘‘no” responses).
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erroneous count. The state space X is defined by three dimensions, 0;B1
C

h i
� 0;B2

C

h i
� 0;B1

E þ B2
E

h i
, where any given state is

defined by the number of counts in each accumulator, xi ¼ m1C ; m2C ; mE
� 	

. For self-terminating processing, the absorbing states

corresponding to correct responses are those in which either m1C ¼ B1
C or m2C ¼ B2

C while mE < BE. For exhaustive processing, the

absorbing states corresponding to correct responses are those in which both m1C ¼ B1
C and m2C ¼ B2

C while mE < B1
E þ B2

E .
As in facilitatory processing, if the two processes begin at different times, whichever process is first proceeds as if it were

the first stage of independent serial processing. Whichever process goes second accumulates counts on the error accumulator
with probability 1� ð1� v1Þð1� v2Þ.

A.1.5. Coactive processing
When the two processes begin at the same time, there are two accumulators, one corresponding to correct information

and one to error information. The response threshold for the correct accumulator is B1
C þ B2

C and for the error accumulator is

B1
E þ B2

E . The probability of accumulating a count on the correct accumulator is 1� ð1� u1Þð1� u2Þ while the probability of
accumulating a count on the error accumulator is 1� ð1� v1Þð1� v2Þ. The state space X is defined by two dimensions,

0;B1
C þ B2

C

h i
� 0;B1

E þ B2
E

h i
, where any given state is defined by the number of counts in each accumulator, xi ¼ mC ; mEf g. There

is only one stopping rule possible in coactive processing, so the absorbing states corresponding to correct responses are those
in which mC ¼ B1

C þ B2
C and mE < B1

E þ B2
E .



Table A.1
Sets of parameter values used to simulate systems of accumulators.
Values were chosen to span the range of possible behavior for each
architecture. For each processing architecture, we obtained predictions
for all combinations of parameter values subject to the constraints that
u1
H > u1

L and u2
H > u2

L , reflecting the assumption that strength manipu-
lations are effective. The k parameter only applies to serial architectures
in which the order of processing may vary.

Parameter Values

u1
H

0.06, 0.07, 0.08

u1
L

0.05, 0.06, 0.07

u2
H

0.06, 0.07, 0.08

u2
L

0.05, 0.06, 0.07

B1
C

2, 3, 4

B1
E

2, 3, 4

B2
C

2, 3, 4

B2
E

2, 3, 4

k 0.5, 0.75, 1
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When the two processes begin at different times, the first process operates as if it were the first stage of independent
serial processing, but whichever process goes second accumulates correct counts with probability 1� ð1� u1Þð1� u2Þ and
error counts with probability 1� ð1� v1Þð1� v2Þ. Coactive processing implies that there is only one possible stopping rule,
which in the case of different starting times corresponds to exhaustive processing since both processes must be engaged
before a decision can be made.

A.1.6. Determining the range of possible forms
For visualization purposes (Fig. 3), we determined the range of possible functional forms that each of these processing

types could produce in terms of the largest positive and negative deflections predicted for each architecture, i.e.,
jmax f ðxÞj � jmin f ðxÞj. The upper limit for a particular processing type is the function produced by the parameters that max-
imizes this quantity while the lower limit is the predicted function that minimizes this quantity.

A.2. Analytic results

To better understand the situations in which processing architectures can produce SIC’s that differ from those obtained
under the assumption of selective influence, we present a set of inequalities that describe how interactions between two
processes can affect SIC predictions. The following extends to RT distributions the results of Townsend and Thomas
(1994) on the properties of mean response time in the absence of selective influence.

A.2.1. Inhibitory parallel self-terminating processing
Assuming self-terminating processing, the SIC is given by
SICPSTðtÞ ¼ SLLðtÞ � SLHðtÞ½ � � SHLðtÞ � SHHðtÞ½ �
¼ FLHðtÞ � FLLðtÞ½ � � FHHðtÞ � FHLðtÞ½ �
¼ FLðtÞ þ GHjLðtÞ � FLðtÞGHjLðtÞ � FLðtÞ � GLjLðtÞ þ FLðtÞGLjLðtÞ
� �
� FHðtÞ þ GHjHðtÞ � FHðtÞGHjHðtÞ � FHðtÞ � GLjHðtÞ þ FHðtÞGLjHðtÞ
� �

¼ 1� FLðtÞ½ � GHjLðtÞ � GLjLðtÞ
� �� 1� FHðtÞ½ � GHjHðtÞ � GLjHðtÞ

� �

where FLðtÞ and FHðtÞ are the finishing time distribution functions for the first process at low (L) and high (H) levels of
strength, GHjLðtÞ and GLjLðtÞ are the finishing time distributions for the second process at low and high levels of strength given
that the first process is low strength, similarly for GHjHðtÞ and GLjHðtÞ.

If the two processes are independent, GHðtÞ ¼ GHjLðtÞ ¼ GHjHðtÞ and GLðtÞ ¼ GLjLðtÞ ¼ GLjHðtÞ, giving

SICPSTðtÞ ¼ 1� FLðtÞ½ � GHðtÞ � GLðtÞ½ � � 1� FHðtÞ½ � GHðtÞ � GLðtÞ½ �

¼ GHðtÞ � GLðtÞ½ � FHðtÞ � FLðtÞ½ �
P 0
because, by assumption, FHðtÞ P FLðtÞ and GHðtÞ P GLðtÞ.
However, if the two processes are not independent, then it is possible for the SIC to lie above (or below) zero, depending

on the nature of the interaction:



Fig. B.1. SIC functions for error responses. Solid lines are posterior means while shaded regions are 95% credible intervals.

Fig. C.1. Hierarchical model structure for estimating response probabilities and RT distributions.
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0 P 1� FLðtÞ½ � GHjLðtÞ � GLjLðtÞ
� �� 1� FHðtÞ½ � GHjHðtÞ � GLjHðtÞ

� �
GHjHðtÞ � GLjHðtÞ
GHjLðtÞ � GLjLðtÞ P

1� FLðtÞ
1� FHðtÞ P 1
This inequality states that a parallel self-terminating process can produce a negative SIC if the speedup of the second pro-
cess when the first process is high strength is sufficiently greater than the speedup of the second process when the first pro-
cess is low strength. Put another way, a substantial speedup can occur only when both processes are high strength—if even
one is low strength, processing is slow. Such a situation occurs when low strength on one process inhibits high strength in
the other process or, equivalently, processing capacity is severely limited such that a speedup occurs only when both pro-
cesses are high strength.

A.2.2. Facilitatory parallel exhaustive processing
Assuming exhaustive processing, the SIC is given by
SICPEXðtÞ ¼ SLLðtÞ � SLHðtÞ½ � � SHLðtÞ � SHHðtÞ½ �
¼ FLHðtÞ � FLLðtÞ½ � � FHHðtÞ � FHLðtÞ½ �
¼ FLðtÞGHjLðtÞ � FLðtÞGLjLðtÞ
� �� FHðtÞGHjHðtÞ � FHðtÞGLjHðtÞ

� �
¼ FLðtÞ GHjLðtÞ � GLjLðtÞ

� �� FHðtÞ GHjHðtÞ � GLjHðtÞ
� �
where FLðtÞ and FHðtÞ are the finishing time distribution functions for the first process at low (L) and high (H) levels of
strength, GHjLðtÞ and GLjLðtÞ are the finishing time distributions for the second process at low and high levels of strength given
that the first process is low strength, similarly for GHjHðtÞ and GLjHðtÞ.

If the two processes are independent, GHðtÞ ¼ GHjLðtÞ ¼ GHjHðtÞ and GLðtÞ ¼ GLjLðtÞ ¼ GLjHðtÞ, giving
SICPEXðtÞ ¼ FLðtÞ GHðtÞ � GLðtÞ½ � � FHðtÞ GHðtÞ � GLðtÞ½ �
¼ FLðtÞ � FHðtÞ½ � GHðtÞ � GLðtÞ½ �
6 0
because, by assumption, FLðtÞ 6 FHðtÞ and GHðtÞ P GLðtÞ.
However, if the two processes are not independent, then it is possible for the SIC to lie above (or below) zero, depending

on the nature of the interaction:
0 6 FLðtÞ GHjLðtÞ � GLjLðtÞ
� �� FHðtÞ GHjHðtÞ � GLjHðtÞ

� �
FHðtÞ GHjHðtÞ � GLjHðtÞ

� �
6 FLðtÞ GHjLðtÞ � GLjLðtÞ

� �
1 6 FHðtÞ

FLðtÞ 6
GHjLðtÞ � GLjLðtÞ
� �
GHjHðtÞ � GLjHðtÞ
� �
The right hand ratio reflects the relative speedup of the second process as it moves from low to high strength when the
first process is low versus high strength. Thus, the inequality states that a parallel exhaustive process can produce a positive
SIC if this speedup is much greater when the first process is low strength than when it is high strength. Such a situation
occurs if the two processes facilitate one another such that information from the first process ‘‘leaks” into the second process.
In this case, high strength from the first process leaks into the second, making variations in the strength of the second pro-
cess less effective. This comports exactly with our simulation results in which exhaustive processing allows for positive SIC’s
only in the presence of facilitatory interactions.

Appendix B. SIC’s for error responses

Although the theory behind the SIC focuses on correct responses, as we did in the main text, it is possible to compute SIC’s
for error response times as well (we label these ‘‘ESIC” functions). Although error responses can arise for many reasons, it is
reasonable to assume that they are ‘‘true errors” in that participants generate errors when memory evidence is poor, rather
than by simple lapses in attention. To the extent that errors arise from the same processes that generate correct responses,
the ESIC’s should ‘‘mirror” the SIC’s obtained for correct responses. That is, the ESIC’s for false alarms (giving a positive
response to IþA�

; I�Aþ, or I�A� pairs) should resemble those for hits (correct positive responses to IþAþ pairs) and the ESIC’s
for misses (giving a negative response to IþAþ pairs) should resemble those for correct rejections (correct negative responses
to IþA�

; I�Aþ, and I�A� pairs).
The ESIC functions are defined as
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ESICIþAþ ðtÞ ¼ ESIþL AþL ðtÞ � ESIþL Aþ
H
ðtÞ

h i
� ESIþHAþ

L
ðtÞ � ESIþHAþH ðtÞ

h i
ESICIþA� ðtÞ ¼ ESIþHA�H ðtÞ � ESIþHA�

L
ðtÞ

h i
� ESIþL A�

H
ðtÞ � ESIþL A�L ðtÞ

h i
ESICI�Aþ ðtÞ ¼ ESI�HAþH ðtÞ � ESI�HAþ

L
ðtÞ

h i
� ESI�L Aþ

H
ðtÞ � ESI�L AþL ðtÞ

h i
ESICI�A� ðtÞ ¼ ESI�HA�H ðtÞ � ESI�HA�

L
ðtÞ

h i
� ESI�L A�

H
ðtÞ � ESI�L A�L ðtÞ

h i
. Posterior predictive distributions from our hierarchical RT model. Observed data are in black, showing means and 95% confidence intervals about
an. Red points are posterior samples of the mean. (For interpretation of the references to color in this figure legend, the reader is referred to the web
of this article.)

. Hierarchical model structure used to estimate LBA parameters and retrieval architectures. Note that we parameterize the response thresholds in
f a ‘‘boundary separation” Bs and ‘‘response bias” ws . Likelihoods are a mixture of chance responding (first summand) and responding based on
l (second summand), as described in the main text.



Fig. D.2. Posterior predictive distributions from our hierarchical LBA model. Observed data are in black, showing means plus/minus 1.96 standard errors of
the mean. Red points are posterior samples. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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where each ES��ðtÞ is the survivor function of the error RT’s in that condition. The posterior distributions over these functions
are shown in Fig. B.1. The error SIC’s are, indeed, mirrored relative to the correct SIC’s in each condition as one would expect
if the same processes lead toward the same responses (regardless of correctness).

Appendix C. Hierarchical RT model

The hierarchical model structure used to estimate individual and group-level response probabilities and RT distributions
is depicted in Fig. C.1. To ensure that our model of response probabilities and RT distributions accurately represents the data,
we report the posterior predictive distributions for mean response probabilities and RT’s in Fig. C.2.

Appendix D. Linear ballistic accumulator modeling

As described in the main text, we simultaneously estimated LBA parameters and retrieval architecture according to the
hierarchical Bayesian model depicted in Fig. D.1. The retrieval architecture for each participant, Ms, is sampled from one of
seven possibilities, which we label in terms of the processes leading toward a positive (‘‘yes”) response: independent parallel
self-terminating (PST), independent parallel exhaustive (PEX), facilitatory exhaustive (FEX), facilitatory self-terminating
(FST), inhibitory exhaustive (IEX), inhibitory self-terminating (IST), or coactive (COA). The likelihood LMs of each participant’s
responses and response times is therefore computed differently depending on which of these architectures was sampled, as
described in the main text.

D.1. Posterior predictive

To verify that this LBA model accurately represents the data, we depict posterior predictive samples in Fig. D.2.

D.2. Distributions over other parameters

The parameters that were of theoretical interest were the drift rates, representing the memory evidence entering into the
accumulators, and the retrieval architecture, reflecting how those inputs were combined and used to reach a decision. How-
ever, for completeness, we also report the distributions of the posterior means for the other LBA parameters, namely, bound-
ary separation (Bs), startpoint variability (As), bias (ws), contaminant probability (cs), and residual time (Rs) in Table D.1.

D.3. Individual correlations

Given that there are interactions between item and associative information in terms of both drift rates (i.e., evidence
derived from encoding) and retrieval processes, do those things trade off with one another? In other words, is it possible
to meaningfully distinguish between these two forms of interaction within this LBA modeling framework? To address this
Table D.1
Posterior modes and 95% credible intervals for the mean of various LBA parameters. Note that these values are on the ‘‘natural” scale of each parameter, rather
than on log- or logistic-transformed scales.

Boundary separation (Bs) Bias (ws) Startpoint variability (As) Residual time (Rs) Contaminant probability (cs)

Mode 2.72 0.516 2.85 0.202 0.024
2.5% quantile 2.52 0.506 2.59 0.162 0.019

97.5% quantile 3.06 0.526 3.12 0.232 0.029
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Fig. D.3. Posterior distribution over individual-level correlations between LBA parameters. A non-filled ellipse indicates that the 95% credible interval for
that correlation includes zero. Red indicates a credible negative correlation and blue indicates a credible positive correlation, with the width of the ellipse
and the saturation of the color reflecting the strength of the correlation. Sums of drift means reflect retrieval speed while differences in drift rates reflect
retrieval accuracy. Retrieval processing is labeled with respect to the processing leading toward positive responses: independent parallel self-terminating
(PST), independent parallel exhaustive (PEX), facilitatory exhaustive (FEX), facilitatory self-terminating (FST), inhibitory exhaustive (IEX), inhibitory self-
terminating (IST), and coactive (COA). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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question, we also computed the posterior distribution over correlations between individual parameters. For each posterior
sample, we computed the complete set of Pearson correlations between each participant’s LBA parameters (Bs;As;ws;Rs; cs, as
well as the sum and difference of positive and negative drift rates for each pair type) and between a 1/0 indicator variable
indicating which of the 7 possible retrieval processes was sampled for that participant. These correlations are depicted in
Fig. D.3.

It is clear that retrieval speed—the sums of positive and negative drift rates for each pair type—are positively correlated
within participants, as is retrieval accuracy (the difference between positive and negative drift rates in each condition). Perti-
nent to the current question, however, is that retrieval processing is not credibly correlated with retrieval accuracy and to the
extent that it is correlated with retrieval speed, it does so across all pair types, rather than being specific to any one pair type
(negative correlations between FEX and summed drift rates). In other words, to the extent that overall retrieval speed is
reduced under facilitatory exhaustive processing, it does so evenly across all levels of item and associative strength and with-
out also being correlated with retrieval accuracy. The identification of the majority of participants as engaging in facilitatory
exhaustive processing is not an artifact of differing interactions between item and associative strength at encoding.
References

Altieri, N., Townsend, J. T., & Wenger, M. J. (2014). A measure for assessing the effects of audiovisual speech integration. Behavior Research Methods, 46,
406–415.

Andermane, N., & Bowers, J. S. (2015). Detailed and gist-like visual memories are forgotten at similar rates over the course of a week. Psychonomic Bulletin &
Review, 22, 1358–1363.

Anderson, J. R. (1983a). Retrieval of information from long-term memory. Science, 220, 25–30.
Anderson, J. R. (1983b). A spreading activation theory of memory. Journal of Verbal Learning and Verbal Behavior, 22, 261–295.
Anderson, J. R., & Bower, G. H. (1973). Human associative memory. Oxford, England: V.H. Winston & Sons.

http://refhub.elsevier.com/S0010-0285(16)30258-4/h0005
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0005
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0010
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0010
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0015
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0020
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0025


G.E. Cox, A.H. Criss / Cognitive Psychology 97 (2017) 31–61 59
Asch, S. E. (1969). A reformulation of the problem of associations. American Psychologist, 24, 92–102.
Ashby, F. G. (1982). Deriving exact predictions from the cascade model. Psychological Review, 89, 599–607.
Aue, W. R., Criss, A. H., & Fischetti, N. W. (2012). Associative information in memory: Evidence from cued recall. Journal of Memory and Language, 66,

109–122.
Aue, W. R., Criss, A. H., & Novak, M. D. (2017). Evaluating mechanisms of proactive facilitation in cued recall. Journal of Memory and Language, 94, 103–118.
Bower, G. H. (1970). Imagery as a relational organizer in associative learning. Journal of Verbal Learning and Verbal Behavior, 9, 529–533.
Brown, S., & Heathcote, A. (2008). The simplest complete model of choice response time: Linear ballistic accumulation. Cognitive Psychology, 57, 153–178.
Buchler, N. G., Faunce, P., Light, L. L., Gottfredson, N., & Reder, L. M. (2011). Effects of repetition on associative recognition in young and older adults: Item

and associative strengthening. Psychology and Aging, 26, 111–126.
Buchler, N. G., Light, L. L., & Reder, L. M. (2008). Memory for items and associations: Distinct representations and processes in associative recognition. Journal

of Memory and Language, 59, 183–199.
Clark, S. E., & Shiffrin, R. M. (1987). Recognition of multiple-item probes. Memory & Cognition, 15, 367–378.
Cohn, M., & Moscovitch, M. (2007). Dissociating measures of associative memory: Evidence and theoretical implications. Journal of Memory and Language,

57, 437–454.
Colonius, H., & Townsend, J. T. (1997). Activation-state representation of models for the redundant-signals-effect. In A. A. J. Marley (Ed.), Choice, decision, and

measurement. NJ: Lawrence Erlbaum Associates.
Cowell, R. A., Bussey, T. J., & Saksida, L. M. (2006). Why does brain damage impair memory? A connectionist model of object recognition memory in

perirhinal cortex. Journal of Neuroscience, 26, 12186–12197.
Cowell, R. A., Bussey, T. J., & Saksida, L. M. (2010). Components of recognition memory: Dissociable cognitive processes or just differences in

representational complexity? Hippocampus, 20, 1245–1262.
Cox, G.E., & Shiffrin, R. M. (in press). A dynamic approach to recognition memory. Psychological Review.
Criss, A. H., & Shiffrin, R. M. (2004). Pairs do not suffer interference from other types of pairs or single items in associative recognition. Memory & Cognition,

32, 1284–1297.
Criss, A. H., & Shiffrin, R. M. (2005). List discrimination in associative recognition and implications for representation. Journal of Experimental Psychology:

Learning, Memory, and Cognition, 31, 1199–1212.
Curran, T., & Hintzman, D. L. (1995). Violations of the independence assumption in process dissociation. Journal of Experimental Psychology: Learning.

Memory, and Cognition, 21, 531–547.
Czerwinski, M., Lightfoot, N., & Shiffrin, R. M. (1992). Automatization and training in visual search. American Journal of Psychology, 105, 271–315.
Diederich, A., & Busemeyer, J. R. (2003). Simple matrix methods for analyzing diffusion models of choice probability, choice response time, and simple

response time. Journal of Mathematical Psychology, 47, 304–322.
Donkin, C., Little, D. R., & Houpt, J. W. (2014). Assessing the speed-accuracy trade-off effect on the capacity of information processing. Journal of Experimental

Psychology: Human Perception and Performance, 40, 1183–1202.
Dosher, B. A. (1984). Discriminating preexperimental (semantic) from learned (episodic) associations: A speed-accuracy study. Cognitive Psychology, 16,

519–555.
Dosher, B. A., & Rosedale, G. (1989). Integrated retrieval cues as a mechanism for priming in retrieval from memory. Journal of Experimental Psychology:

General, 118, 191–211.
Dosher, B. A., & Rosedale, G. (1991). Judgments of semantic and episodic relatedness: Common time-course and failure of segregation. Journal of Memory and

Language, 30, 125–160.
Dosher, B. A., & Rosedale, G. (1997). Configural processing in memory retrieval: Multiple cues and ensemble representations. Cognitive Psychology, 33,

209–265.
Dunn, J. C. (2004). Remember–know: A matter of confidence. Psychological Review, 111, 524–542.
Dunn, J. C. (2008). The dimensionality of the remember–know task: A state-trace analysis. Psychological Review, 115, 426–446.
Eidels, A., Donkin, C., Brown, S. D., & Heathcote, A. (2010). Converging measures of workload capacity. Psychonomic Bulletin & Review, 17, 763–771.
Eidels, A., Houpt, J. W., Altieri, N., Pei, L., & Townsend, J. T. (2011). Nice guys finish fast and bad guys finish last: Facilitatory vs. inhibitory interaction in

parallel systems. Journal of Mathematical Psychology, 55, 176–190.
Fific, M., Nosofsky, R. M., & Townsend, J. T. (2008). Information-processing architectures in multidimensional classification: A validation test of the systems

factorial technology. Journal of Experimental Psychology: Human Perception and Performance, 34, 356–375.
Gauthier, I., & Tarr, M. J. (1997). Becoming a ‘‘greeble” expert: Exploring mechanisms for face perception. Vision Research, 37, 1673–1682.
Gillund, G., & Shiffrin, R. M. (1984). A retrieval model for both recognition and recall. Psychological Review, 91, 1–67.
Goh, J. O. S., Siong, S. C., Park, D., Gutchess, A., Hebrank, A., & Chee, M. W. L. (2004). Cortical areas involved in object, background, and object-background

processing revealed with functional magnetic resonance adaptation. The Journal of Neuroscience, 24, 10223–10228.
Goldstone, R. L. (2000). Unitization during category learning. Journal of Experimental Psychology: Human Perception and Performance, 26, 86–112.
Graf, P., & Schacter, D. L. (1985). Implicit and explicit memory for new associations in normal and amnesic subjects. Journal of Experimental Psychology:

Learning. Memory, and Cognition, 11, 501–518.
Greene, R. L., & Tussing, A. A. (2001). Similarity and associative recognition. Journal of Memory and Language, 45, 573–584.
Gronlund, S. D., & Ratcliff, R. (1989). Time course of item and associative information: Implications for global memory models. Journal of Experimental

Psychology: Learning, Memory, and Cognition, 15, 846–858.
Haskins, A. L., Yonelinas, A. P., Quamme, J. R., & Ranganath, C. (2008). Perirhinal cortex supports encoding and familiarity-based recognition of novel

associations. Neuron, 59, 554–560.
Hillstrom, A. P., & Logan, G. D. (1997). Process dissociation, cognitive architecture, and response time: Comments on Lindsay and Jacoby (1994). Journal of

Experimental Psychology: Human Perception and Performance, 23, 1561–1578.
Hintzman, D. L. (1988). Judgements of frequency and recognition memory in a multiple-trace memory model. Psychological Review, 95, 528–551.
Hockley, W. E. (1991). Recognition memory for item and associative information: A comparison of forgetting rates. In Relating theory and data: Essays on

human memory in honor of Bennet B. Murdock (pp. 227–248).
Hockley, W. E., & Cristi, C. (1996a). Tests of encoding tradeoffs between item and associative information. Memory & Cognition, 24, 202–216.
Hockley, W. E., & Cristi, C. (1996b). Tests of the separate retrieval of item and associative information using a frequency-judgment task.Memory & Cognition,

24, 796–811.
Houpt, J. W., Blaha, L. M., McIntire, J. P., Havig, P. R., & Townsend, J. T. (2014). Systems factorial technology with R. Behavior Research Methods, 46, 307–330.
Houpt, J. W., MacEachern, S. N., Peruggia, M., Townsend, J. T., & Van Zandt, T. (2016). Semiparametric Bayesian approaches to systems factorial technology.

Journal of Mathematical Psychology, 75, 68–85.
Houpt, J. W., & Townsend, J. T. (2011). An extension of SIC predictions to the Wiener coactive model. Journal of Mathematical Psychology, 55, 267–270.
Humphreys, M. S., Bain, J. D., & Pike, R. (1989). Different ways to cue a coherent memory system: A theory for episodic, semantic, and procedural tasks.

Psychological Review, 96, 208–233.
Jacoby, L. L. (1991). A process dissociation framework: Separating automatic from intentional uses of memory. Journal of Memory and Language, 30, 513–541.
Jones, M., & Dzhafarov, E. N. (2014). Unfalsifiability and mutual translatability of major modeling schemes for choice reaction time. Psychological Review,

121, 1–32.
Jou, J. (2010). Can associative information be strategically separated from item information in word-pair recognition? Psychonomic Bulletin & Review, 17,

778–783.

http://refhub.elsevier.com/S0010-0285(16)30258-4/h0030
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0035
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0040
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0040
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0045
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0050
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0055
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0060
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0060
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0065
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0065
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0070
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0075
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0075
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0080
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0080
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0085
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0085
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0090
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0090
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0100
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0100
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0105
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0105
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0110
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0110
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0115
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0120
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0120
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0125
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0125
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0130
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0130
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0135
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0135
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0140
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0140
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0145
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0145
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0150
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0155
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0160
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0165
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0165
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0170
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0170
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0175
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0175
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0180
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0185
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0185
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0190
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0195
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0195
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0200
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0205
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0205
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0210
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0210
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0215
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0215
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0220
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0230
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0235
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0235
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0240
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0245
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0245
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0250
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0255
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0255
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0260
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0265
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0265
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0270
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0270


60 G.E. Cox, A.H. Criss / Cognitive Psychology 97 (2017) 31–61
Kan, I. P., Keane, M. M., Martin, E., Parks-Stamm, E. J., Lewis, L., & Verfaellie, M. (2011). Implicit memory for novel associations between pictures: Effects of
stimulus unitization and aging. Memory & Cognition, 39, 778–790.

Kelley, R., & Wixted, J. T. (2001). On the nature of associative information in recognition memory. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 27, 701–722.

Kilb, A., & Naveh-Benjamin, M. (2011). The effects of pure pair repetition on younger and older adults’ associative memory. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 37, 706–719.

Köhler, W. (1941). On the nature of associations. Proceedings of the American Philosophical Society, 84, 489–502.
Konkle, T., Brady, T. F., Alvarez, G. A., & Oliva, A. (2010). Conceptual distinctiveness supports detailed visual long-term memory for real-world objects.

Journal of Experimental Psychology: General, 139, 558–578.
Kruschke, J. K. (2015). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan (2nd ed.). London: Academic Press.
Kumaran, D., & Maguire, E. A. (2009). Novelty signals: A window into hippocampal information processing. Trends in Cognitive Sciences, 13, 47–54.
Little, D. R., Eidels, A., Fific, M., & Wang, T. (2015). Understanding the influence of distractors on workload capacity. Journal of Mathematical Psychology,

25–36.
Little, D. R., Nosofsky, R. M., & Denton, S. E. (2011). Response-time tests of logical-rule models of categorization. Journal of Experimental Psychology: Learning,

Memory, and Cognition, 37, 1–27.
Liu, Y. (1996). Queueing network modeling of elementary mental processes. Psychological Review, 103, 116–136.
Mandler, G. (1980). Recognizing: The judgment of previous occurrence. Psychological Review, 87, 252–271.
McClelland, J. L. (1979). On the time relations of mental processes: An examination of systems of processes in cascade. Psychological Review, 86, 287–330.
McClelland, J. L., & Chappell, M. (1998). Familiarity breeds differentiation: A subjective-likelihood approach to the effects of experience in recognition

memory. Psychological Review, 105, 724–760.
McGee, R. (1980). Imagery and recognition memory: The effects of relational organization. Memory & Cognition, 8, 394–399.
McKoon, G., & Ratcliff, R. (2012). Aging and IQ effects on associative recognition and priming in item recognition. Journal of Memory and Language, 66,

416–437.
Mewhort, D. J. K., & Johns, E. E. (2000). The extralist-feature effect: Evidence against item matching in short-term recognition memory. Journal of

Experimental Psychology: General, 129, 262–284.
Miller, J. (1993). A queue-series model for reaction time, with discrete-stage and continuous-flow models as special cases. Psychological Review, 100,

702–715.
Murdock, B. B. (1974). Human memory: Theory and data. Hillsdale, NJ: Erlbaum.
Murdock, B. B. (1982). A theory for the storage and retrieval of item and associative information. Psychological Review, 89, 609–626.
Murnane, K., & Shiffrin, R. M. (1991). Interference and the representation of events in memory. Journal of Experimental Psychology: Learning, Memory, and

Cognition, 17, 855–874.
Naveh-Benjamin, M. (2000). Adult age differences in memory performance: Tests of an associative deficit hypothesis. Journal of Experimental Psychology:

Learning, Memory, and Cognition, 26, 1170–1187.
Naveh-Benjamin, M., Hussain, Z., Guez, J., & Bar-On, M. (2003). Adult age differences in episodic memory: Further support for an associative-deficit

hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 826–837.
Naveh-Benjamin, M., Shing, Y. L., Kilb, A., Werkle-Bergner, M., Lindenberger, U., & Li, S. (2009). Adult age differences in memory for name-face associations:

The effects of intentional and incidental learning. Memory, 17, 220–232.
Nelson, A. B., & Shiffrin, R. M. (2013). The co-evolution of knowledge and event memory. Psychological Review, 120, 356–394.
Nobel, P. A., & Shiffrin, R. M. (2001). Retrieval processes in recognition and cued recall. Journal of Experimental Psychology: Learning, Memory, and Cognition,

27, 384–413.
Old, S. R., & Naveh-Benjamin, M. (2008). Memory for people and their actions: Further evidence for an age-related associative deficit. Psychology and Aging,

23, 467–472.
Paivio, A. (1969). Mental imagery in associative learning and memory. Psychological Review, 76, 241–263.
Parks, C. M., & Yonelinas, A. P. (2015). The importance of unitization for familiarity-based learning. Journal of Experimental Psychology: Learning, Memory, and

Cognition, 41, 881–903.
Peirce, J. W. (2007). PsychoPy—psychophysics software in Python. Journal of Neuroscience Methods, 162, 8–13.
Plummer, M. (2013). JAGS: Just another Gibbs sampler. <http://mcmc-jags.sourceforge.net/>.
Pratte, M. S., & Rouder, J. N. (2012). Assessing the dissociability of recollection and familiarity in recognition memory. Journal of Experimental Psychology:

Learning, Memory, and Cognition, 38, 1591–1607.
Prior, A., & Bentin, S. (2003). Incidental formation of episodic associations: The importance of sentential context. Memory & Cognition, 31, 306–316.
Prior, A., & Bentin, S. (2008). Word associations are formed incidentally during sentential semantic integration. Acta Psychologica, 127, 57–71.
Ratcliff, R., & McKoon, G. (1988). A retrieval theory of priming in memory. Psychological Review, 95, 385–408.
Ratcliff, R., & Murdock, B. B. (1976). Retrieval processes in recognition memory. Psychological Review, 83, 190–214.
Ratcliff, R., Thapar, A., & McKoon, G. (2011). Effects of aging and IQ on item and associative memory. Journal of Experimental Psychology: General, 140,

464–487.
Ratcliff, R., Van Zandt, T., & McKoon, G. (1995). Process dissociation, single-process theories, and recognition memory. Journal of Experimental Psychology:

General, 124, 352–374.
Rhodes, M. G., Castel, A. D., & Jacoby, L. L. (2008). Associative recognition of face pairs by younger and older adults: The role of familiarity-based processing.

Psychology and Aging, 23, 239–249.
Rotello, C. M., & Heit, E. (2000). Associative recognition: A case of recall-to-reject processing. Memory & Cognition, 28, 907–922.
Rouder, J. N., Lu, J., Speckman, P. L., Sun, D., & Jiang, Y. (2005). A hierarchical model for estimating response time distributions. Psychonomic Bulletin & Review,

12, 195–223.
Rugg, M. D., & Curran, T. (2007). Event-related potentials and recognition memory. Trends in Cognitive Sciences, 11, 251–257.
Schweickert, R. (1989). Separable effects of factors on activation functions in discrete and continuous models: d0 and evoked potentials. Psychological

Bulletin, 106, 318–328.
Shiffrin, R. M., & Lightfoot, N. (1997). Perceptual learning of alphanumeric-like characters. In R. L. Goldstone, P. G. Schyns, & D. L. Medin (Eds.). The

psychology of learning and motivation (Vol. 36, pp. 83–126). San Diego, CA: Academic Press.
Shiffrin, R. M., & Steyvers, M. (1997). A model for recognition memory: REM—retrieving effectively from memory. Psychonomic Bulletin & Review, 4,

145–166.
Smith, E. E., & Haviland, S. E. (1972). Why words are perceived more accurately than nonwords: Inference versus unitization. Journal of Experimental

Psychology, 92, 59–64.
Smith, L. B., Suanda, S. H., & Yu, C. (2014). The unrealized promise of infant statistical word-referent learning. Trends in Cognitive Sciences, 18, 251–258.
Smith, L. B., & Yu, C. (2008). Infants rapidly learn word-referent mappings via cross-situational statistics. Cognition, 106, 1558–1568.
Speer, N. K., & Curran, T. (2007). ERP correlates of familiarity and recollection processes in visual associative recognition. Brain Research, 1174, 97–109.
Staresina, B. P., & Davachi, L. (2010). Object unitization and associative memory formation are supported by distinct brain regions. Journal of Neuroscience,

30, 9890–9897.
Stewart, N., & Brown, G. D. (2005). Similarity and dissimilarity as evidence in perceptual categorization. Journal of Mathematical Psychology, 49, 403–409.
Thomson, D. M., & Tulving, E. (1970). Associative encoding and retrieval: Weak and strong cues. Journal of Experimental Psychology, 86, 255–262.

http://refhub.elsevier.com/S0010-0285(16)30258-4/h0275
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0275
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0280
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0280
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0285
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0285
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0290
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0295
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0295
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0300
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0305
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0310
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0310
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0315
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0315
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0320
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0325
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0330
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0335
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0335
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0340
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0345
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0345
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0350
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0350
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0355
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0355
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0360
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0365
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0370
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0370
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0375
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0375
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0380
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0380
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0385
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0385
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0390
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0395
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0395
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0400
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0400
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0405
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0410
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0410
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0415
http://mcmc-jags.sourceforge.net/
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0425
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0425
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0430
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0435
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0440
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0445
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0450
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0450
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0455
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0455
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0460
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0460
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0465
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0470
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0470
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0475
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0480
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0480
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0480
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0485
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0485
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0490
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0490
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0495
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0495
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0500
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0505
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0510
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0515
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0515
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0520
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0525


G.E. Cox, A.H. Criss / Cognitive Psychology 97 (2017) 31–61 61
Townsend, J. T., & Altieri, N. (2012). An accuracy-response time capacity assessment function that measures performance against standard parallel
predictions. Psychologial Review, 119, 500–516.

Townsend, J. T., & Fikes, T. (1995). A beginning quantitative taxonomy of cognitive activation systems and application to continuous flow processes. Technical
Report 131. Indiana University Bloomington, Cognitive Science Program.

Townsend, J. T., & Nozawa, G. (1995). Spatio-temporal properties of elementary perception: An investigation of parallel, serial, and coactive theories. Journal
of Mathematical Psychology, 39, 321–359.

Townsend, J. T., & Thomas, R. D. (1994). Stochastic dependencies in parallel and serial models: Effects on systems factorial interactions. Journal of
Mathematical Psychology, 38, 1–34.

Townsend, J. T., & Wenger, M. J. (2004). A theory of interactive parallel processing: New capacity measures and predictions for a response time inequality
series. Psychologial Review, 111, 1003–1035.

Townsend, J. T., & Wenger, M. J. (2015). On the dynamic perceptual characteristics of Gestalten: Theory-based methods. In J. Wagemans (Ed.), The Oxford
Handbook of Perceptual Organization. Oxford: Oxford University Press.

Tulving, E., & Thompson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80, 352–373.
Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327–352.
Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M., & von der Heydt, R. (2012). A century of Gestalt psychology in visual

perception: I. Perceptual grouping and figure-ground organization. Psychological Bulletin, 138, 1172–1217.
Wagemans, J., Feldman, J., Gepshtein, S., Kimchi, R., Pomerantz, J. R., van der Helm, P. A., & van Leeuwen, C. (2012). A century of Gestalt psychology in visual

perception: II. Conceptual and theoretical foundations. Psychological Bulletin, 138, 1218–1252.
Wickelgren, W. A., & Corbett, A. T. (1977). Associative interference and retrieval dynamics in yes-no recall and recognition. Journal of Experimental

Psychology: Human Learning and Memory, 3, 189–202.
Wixted, J. T. (2007). Dual-process theory and signal-detection theory of recognition memory. Psychological Review, 114, 152–176.
Yang, H., Fific, M., & Townsend, J. T. (2014). Survivor interaction contrast wiggle predictions of parallel and serial models for an arbitrary number of

processes. Journal of Mathematical Psychology, 58, 21–32.
Yonelinas, A. P. (1997). Recognition memory ROCs for item and associative information: The contribution of recollection and familiarity. Memory &

Cognition, 25, 747–763.
Zacks, J. M., & Tversky, B. (2001). Event structure in perception and cognition. Psychological Bulletin, 127, 3–21.

http://refhub.elsevier.com/S0010-0285(16)30258-4/h0530
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0530
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0540
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0540
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0545
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0545
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0550
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0550
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0555
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0555
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0560
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0565
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0570
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0570
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0575
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0575
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0580
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0580
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0585
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0590
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0590
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0595
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0595
http://refhub.elsevier.com/S0010-0285(16)30258-4/h0600

	Parallel interactive retrieval of item and associative information from event memory
	1 Introduction
	2 Methods
	2.1 Participants
	2.2 Materials
	2.3 Design
	2.4 Procedure

	3 Results
	4 Analysis
	4.1 Estimating RT distributions
	4.1.1 Parameters
	4.1.2 Bayesian model
	4.1.3 Posterior RT distributions

	4.2 Systems factorial analysis
	4.2.1 Interactions between item and associative memory
	4.2.2 Combining matching and mismatching information
	4.2.3 Conclusions from SFT

	4.3 Individual modeling
	4.3.1 Linear ballistic accumulator models
	4.3.2 Interactions prior to retrieval
	4.3.3 Interactions during retrieval


	5 Discussion
	5.1 Final supported model
	5.2 Generality
	5.2.1 Stimuli
	5.2.2 Tasks
	5.2.3 Systems factorial technology

	5.3 Implications
	5.3.1 Are item and associative retrieval independent?
	5.3.2 What is associative information?
	5.3.3 What is associative retrieval?
	5.3.4 From episodic to semantic associations
	5.3.5 Associative deficits in aging


	6 Conclusion
	Acknowledgments
	Appendix A Properties of interacting processes
	A.1 Simulations
	A.1.1 Independent parallel processing
	A.1.2 Independent serial processing
	A.1.3 Facilitatory processing
	A.1.4 Inhibitory processing
	A.1.5 Coactive processing
	A.1.6 Determining the range of possible forms

	A.2 Analytic results
	A.2.1 Inhibitory parallel self-terminating processing
	A.2.2 Facilitatory parallel exhaustive processing


	Appendix B SIC’s for error responses
	Appendix C Hierarchical RT model
	Appendix D Linear ballistic accumulator modeling
	D.1 Posterior predictive
	D.2 Distributions over other parameters
	D.3 Individual correlations

	References


