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a b s t r a c t

Systems Factorial Technology (SFT; Townsend and Nozawa (1995)) gains much of its power from finding
tight nonparametric links between theory anddata. But this power comes at a price: Applying SFT typically
requires low error rates, many observations, and a guarantee of selective influence of experimental
manipulations, conditions that cannot be satisfied in many fields of psychology. We present a set of
parametric methods that, while lacking the full power of traditional SFT, allow its logic to be applied to
situations that do not adhere to those conditions. These methods are based around building different
parallel architectures from systems of Linear Ballistic Accumulators (Brown and Heathcote (2008)),
including architectures that involve interactions between processes. The primary output of thesemethods
is an estimate of the probabilities that a participant is best described by each of these architectures. In an
example and set of simulations, we show that these methods are accurate and robust at identifying the
processing architectures employed by a set of participants, may be estimated in maximum a posteriori
or fully Bayesian fashion, and that hierarchical estimation allowing accurate identification with as few as
three trials per participant per condition.We provide code that allows researchers to apply thesemethods
to their own data at https://osf.io/m6ubq/.
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1. Introduction

One of the core goals of cognitive psychology is to charac-
terize the structures by which information is processed in liv-
ing organisms. Theories in cognitive psychology must, therefore,
specify how information from the environment and from the or-
ganism’s memory conspire to lead to observable behavior. Just as
psychophysics is concerned with the mapping function between
external sensation and reported experience, cognitive psychology
is concernedwith themapping between both internal and external
information and observed behavior. And just as in psychophysics,
to be able to address this concern in a practical way, cognitive
psychologists must constrain both the information available to
the organism as well as its range of behavior. While placing such
constraints has the cost of making it harder to generalize results to
situations where those constraints are loosened, it has the advan-
tage of allowing for a rigorous characterization of the information
processing architecture in a given domain.

One of the most powerful sets of tools for characterizing in-
formation processing architectures is Systems Factorial Technol-
ogy (SFT; Townsend &Nozawa, 1995). Using a number ofmeasures
derived from response time (RT) distributions observed from a
double factorial experimental design, SFT makes it possible to
characterize the information processing architecture in the ex-
perimental domain in a purely qualitative way, that is, without
recourse to specific parametric models of the mapping between
information and behavior. This means that entire categories of
theory (those that entail inappropriate processing architectures)
can be falsified and subsequent work may be focused on those cat-
egories of theory that realize the appropriate architecture. Given
the endless variety of potential theories in any cognitive domain,
SFT is then an extremely valuable tool for both discovery (which

architectures are possible?) and navigation (where should future
research be directed?).

Unfortunately, many domains of psychology – including much
memory and decision research – have characteristics that make
it difficult or impossible to apply the tools of SFT. Within these
domains, there are typically high error rates, it is difficult to collect
large amounts of data per individual, and researchers may be
unable to strictly control the information that is available for a
participant to process. In this article, we describe a set of para-
metric methods that use systems of accumulator models to realize
different types of parallel cognitive architectures. These methods
allow researchers in domains that are problematic for traditional
SFT to estimate the probabilities with which participants are best-
described by each architecture. While the parametric methods we
describe can never achieve the impressive generality of SFT in its
traditional non-parametric form – and are currently limited to
parallel architectures – these methods can, if carefully applied and
interpreted, be an effective supplement to SFT in psychological
domains towhich traditional non-parametricmethods are difficult
to apply.

1.1. Applying SFT—and its restrictions

SFT is applied in situations where multiple sources of infor-
mation potentially impinge on a participant, who must use those
sources tomake a decision. SFT has the power to identify, in a non-
parametric way, the potential relationships (the ‘‘architecture’’)
between how those sources are processed in order to lead to that
decision. This power comes from the ability to derive qualita-
tive predictions for these architectures in a carefully controlled
factorial experiment. Typically, this experiment focuses on two
information sources, hence it is a ‘‘double factorial’’ experiment
and involves separately manipulating the strength of two sources
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of information supplied by the stimuli in the experiment, where
manipulating the strength of one source of information selectively
influences just that source—manipulating one source has no effect
on the other. The participant is required tomake a binary response
(or at least a response that can be classified in a binary fashion)
to the stimuli in the experiment on the basis of the information
provided by each source.

Under the condition of selective influence (as well as other
technical conditions, see Townsend & Nozawa, 1995), different
processing architectures yield qualitatively different predictions
regarding the distributions of response times in each condition
of the experiment. These architectures can be characterized by
the order of processing and by the decision rule applied to the
results of such processing. The order of processing is generally
divided into two types: parallel, in which both sources of infor-
mation are processed at the same time; and serial, in which the
two sources are processed sequentially. There are also two kinds
of decision rule: self-terminating processes are those in which only
one source needs to be finished before a response can be made;
and exhaustive processes are those that require both sources to
be processed before a decision can be made. A final processing
architecture is the coactive architecture in which both sources of
information interact and get combined into a single source prior to
processing. Coactive processing can be viewed as a special case of
parallel processing, though obviously there can be no distinction
between self-terminating or exhaustive decision rules since only
one process goes on.

Traditional SFT allows the researcher who conducts a double
factorial experiment to identify which of these processing archi-
tectures each participant uses to accomplish the task, without
needing to specify or estimate any parameters. This comes at a
price, however. As we note below, applying the tools of SFT entails
several assumptions and caveats, both practical and theoretical.

1.1.1. Form of the experiment
First, the domain of interest must allow for the implementation

of a double factorial experiment: It must be possible to identify
two nominally separate information sources in the domain (like
hue and saturation in color perception or item and associative
information in memory). And the experimental task must be such
that responses can be made with a single action (like pressing a
key, and unlike, e.g., speaking a sentence) that can be categorized
into correct and incorrect responses. In general, though, many
experimental tasks in cognitive psychology already adhere to the
demands of the double factorial design, so this does not often
present much of an impediment.

1.1.2. Estimating RT distributions
A significant practical hurdle is posed by the fact that SFT

relies on measures that are based on RT distributions. Getting a
good estimate of a RTdistribution using traditional non-parametric
methods like the empirical CDF requires on the order of hundreds
of trials per individual per condition. Because of this need for
extensive data collection, SFT is typically employed in experiments
using a relatively small number of participants, each of whom
contributes a large number of observations. In addition, many SFT
measures make use of only correct responses, such that if accuracy
is less than perfect, it may require even more trials to get a good
estimate of the RT distributions for correct responses.

1.1.3. Errors, learning, and process mixtures
To the extent that errors reflect additional processes beyond

those required to perform the task (e.g., guessing processes), im-
perfect performance can result in RT distributions that reflect a
mixture of processing architectures rather than just those of in-
terest to the researcher. And if a researcher must compensate by

collecting a large amount of data per individual, doing so typically
requires repeating individual stimuli many times over the course
of the experiment. If the domain is one that is already so deeply
ingrained that experimental experience only represents a small
drop in a large pool (many perceptual domains would likely fall
into this category), this may not be a problem. But if the domain
entails novel or unusual stimuli – or the experimental task itself
is sufficiently unusual – then participants are likely learning or
adapting during the experiment. This means that the information
processing architecture can change between the beginning and
end of the experiment, such that the aggregate RT distributions
obtained reflect a mixture of different processes. For example,
participants in a categorization experiment may initially rely on
short-term memory for recent items and transition to responding
that is based on a direct stimulus–response mapping (e.g., Logan,
1988; Nosofsky, Cao, Cox, & Shiffrin, 2014; Schneider & Shiffrin,
1977; Shiffrin & Schneider, 1977).

1.1.4. Selective influence and interacting processes
The qualitative signatures that are detectable by SFT are only

diagnostic under a set of assumptions about the relationships
between the underlying processes and observed behavior. Perhaps
the most crucial assumption is that of selective influence, that the
manipulation one of the two sources of information in the double
factorial experiment has no affect on the other source (Townsend&
Thomas, 1994). This assumption is unlikely to be satisfied in many
domains of psychology, for example in memory (e.g., the way an
event is encodedmaydependon theway other events are encoded)
or decision research (e.g., the effect of an increase in payoffs may
depend on the other options that are available). Eidels, Houpt,
Altieri, Pei, and Townsend (2011) identified two loci for violations
of selective influence: Selective influencemay fail at the level of the
inputs to the information processing architecture, that is, that the
stimuli themselves are constructed in a way that violates selective
influence. It may also fail due to interactions that occur within the
information processing architecture itself, such that the effective
architecture can change depending on its internal activity (maybe
when both inputs are at high strength, there is facilitation such
that the system exhibits coactive behavior but if both inputs are
at low strength, the facilitation is not present as the system ex-
hibits independent parallel behavior). In situationswhere selective
influence is likely to have been violated – in either or both of the
two ways described above – SFT can offer only little guidance, and
concluding which processing architectures are plausible in these
situations often requires extensive simulation (Cox & Criss, 2017;
Eidels et al., 2011).

Despite the difficulties they cause when trying to apply SFT,
violations of selective influence that result from interactionswithin
a processing architecture are, in fact, an essential characteristic
many classes of architectures (Townsend & Wenger, 2004). An
extreme example of such a system is a fully coactive architecture,
in which all information in a task is pooled together into a single
channel which is used to guide behavior. Although predictions
have been made for certain classes of coactive architecture (Houpt
& Townsend, 2011; Townsend & Nozawa, 1995), there is as yet no
general signature that coactive architectures are known to produce
that can be detected using SFT. There are also no known general
signatures that are characteristic of all partially-interactive archi-
tectures, that is, those that only pool only some of their inputs (Cox
& Criss, 2017). The potential prevalence of parallel interactive
systems suggests the need for some way to detect when they
may be operating, and this seems especially so for domains that
involve complex sources of information (like memory, reasoning,
or decision making).
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1.1.5. Statistical tests
While much of the power of SFT derives from the fact that its

tools are non-parametric, the qualitative nature of SFT leads to
a paradox, in that it becomes difficult to quantify the degree of
statistical support for any conclusions reached via SFT.When there
is a massive amount of data per individual there is little need for
statistics, but if uncertainty remains, either because there is not
enough data or the data are extremely variable, good statistics
are essential. Although non-parametric or semi-parametric meth-
ods are viable (Houpt, Blaha, McIntire, Havig, & Townsend, 2014;
Houpt, Heathcote, & Eidels, 2017; Houpt, MacEachern, Peruggia,
Townsend, & Van Zandt, 2016), in practice it is difficult to directly
quantify the degree of statistical support for a particular architec-
ture without recourse to a parametric model at some stage (Cox
& Criss, 2017, 2017; Houpt & Fifić, 2017; Thiele, Haaf, & Rouder,
2017).

1.2. Accumulator models and SFT

As described above, SFT provides nonparametric tools for iden-
tifying information processing architectures when

1. there are sufficient observations per participant per condi-
tion to allow for good estimates of RT distributions;

2. error rates are sufficiently low and the system is stable
over time, such that RT distributions provide a pure view of
behavior of the processes of interest;

3. selective influence is satisfied both at the input level and
within the possible cognitive architectures themselves.

To address situations with relatively few observations per partic-
ipant, where error rates are non-trivial, or where there may be
interactions among processes, researchers have turned to vari-
ous accumulator models of information processing. These models
have the property that specific actions (like pressing a particular
response key) are associated with an ‘‘accumulator’’ that has, at
any given time, a level of activation that represents the likelihood
that a participant will take the associated action. They are called
‘‘accumulators’’ because their level of activation is a function of
the amount of evidence or support that has been accumulated for
that action at any given time. The amount of evidence/support
is a function of information that flows into the system either
from the environment or from a participant’s memory. When the
amount of accumulated activation/support for a particular action
reaches a threshold (which may be different for different actions),
the associated action is taken. Accumulator models of myriad
types have proven widely applicable across psychology, including
vision (Smith & Vickers, 1988; Vickers, 1970), memory (Cox &
Shiffrin, 2017; Donkin & Nosofsky, 2012; Ratcliff, 1978), learn-
ing (Logan, 1988), categorization (Nosofsky & Palmeri, 1997), and
decision making (Busemeyer & Townsend, 1993; Edwards, 1965;
Link, 1975; Link & Heath, 1975).

Accumulators may be independent, in which case they form
a race model—whichever accumulator ‘‘wins the race’’ against
the others determines how a participant responds. Independent
race models have a long history of being associated with SFT, in
large part because they serve as a useful benchmark model; SFT’s
capacity measures compare the speed and/or accuracy of behavior
relative to what would be expected from an independent race
model (Townsend & Altieri, 2012). Another popular class of ac-
cumulator models are diffusion/random walk models, which have
seen much use in applications of SFT to categorization (e.g., Fifić,
Nosofsky, & Townsend, 2008; Little, Nosofsky, & Denton, 2011). In
a random walk or diffusion model (e.g., Ratcliff, 1978), there are
only two accumulators each of which is associated with one of
twomutually exclusive responses (e.g., an item can be classified as
belonging to category A or B). Because they aremutually exclusive,

Fig. 1. A single Linear Ballistic Accumulator (LBA), illustrating the role of each
parameter. See the main text for detail on each parameter.

if incoming information favors one option, inmust also disfavor the
other. Thus, a random walk model can be viewed as an interactive
race model between two accumulators that are perfectly nega-
tively correlated (an increase in activation for one accumulator
results in an equal decrease in activation for the other). Conversely,
it is possible for a parallel race model to mimic the behavior of
a random walk model in many cases, so long as the inputs to
the accumulators are anti-correlated (Donkin, Brown, &Heathcote,
2011; Teodorescu & Usher, 2013).1

Regardless of how they are set up, accumulator models yield
predictions not only for which action is taken, but how long it takes
to choose that action. In other words, they provide a formal way of
deriving the RT distributions and response probabilities needed in
SFT, from a set of parameters describing the inputs and thresholds
for each accumulator. To the extent that these model parameters
can be identified with constructs in SFT like ‘‘capacity’’ (Eidels,
Donkin, Brown, & Heathcote, 2010a), accumulator models thus
provide parametric ways to address similar questions about the
architecture of information processing. As we shall see throughout
this article, there are advantages to using parametric models in
SFT, specifically, that they do not require as much data for efficient
estimation and they can deal elegantly with high rates of error,
process mixtures, and certain violations of selective influence.
They have the disadvantage, however, of making a researcher’s
conclusions conditional on the choice of model, which is a distinct
drawback from the full non-parametric power of SFT. However, we
argue that so long as this crucial fact is kept in mind, the flexibility
afforded by parametric methods can outweigh their drawbacks.

1.3. Linear ballistic accumulator models

We focus in this article on one class of parallel accumula-
tor models that strikes a good balance between flexibility and
tractability, namely, the Linear Ballistic Accumulator (LBA Brown
& Heathcote, 2008). According to this model, depicted in Fig. 1, the
initial level of activation/support for each accumulator is sampled
from a uniform distribution between 0 and α. Variability at this
stage is meant to reflect the idea that there may be activation from
sources other than the stimuli to be presented on a given trial,
including residual activation from previous trials, activation from
other stimuli in the environment, or even ‘‘premature’’ activation
from the stimulus itself (cf. Laming, 1968; Ratcliff & Rouder, 1998;

1 This is reminiscent of the mimicry between serial and parallel processes—
so long as the inputs to the parallel racing accumulators are set up appropri-
ately (Townsend, 1976).
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Rouder, 1996). Upon presentation of a stimulus, the accumulator’s
activation evolves over time in a linear fashion,with a rate sampled
from a normal distribution with mean v and standard deviation
s (for present purposes, s represents a scaling parameter, but see
Donkin, Brown, & Heathcote, 2009). If the accumulator’s activation
reaches a thresholdω before any other accumulators have reached
their respective thresholds, then the response associated with the
winning accumulator is produced. The final response time is the
time taken for the winning accumulator to reach its threshold plus
a residual time R that reflects the time needed to detect and begin
processing the stimulus as well as the time needed to execute the
chosen response.

The apparent simplicity of the LBA belies its ability to provide
good quantitative accounts of both response probability and the
shapes of RT distributions across a variety of domains (e.g., Rae,
Heathcote, Donkin, Averell, & Brown, 2014). Moreover, the analyt-
ical tractability of the LBA has the practical benefit that many LBA’s
can be ‘‘plugged together’’ to form entire systems of accumulators
that realize particular cognitive models (Nosofsky et al., 2014;
Trueblood, Brown, & Heathcote, 2014; Zandbelt, Purcell, Palmeri,
Logan, & Schall, 2014). Indeed, the LBA has already been used to
augment traditional SFT measures by using the mean evidence ac-
cumulation rates (the v parameters) to estimate processing capac-
ity (Eidels et al., 2010a). Evidence accumulation rates in the LBA can
also be used to model violations of selective influence separately
from any interactions that may occur during the accumulation
process. Further, it is possible to realize different processing archi-
tecture as systems of LBA’s, thereby allowing researchers not just
to measure processing capacity, but to infer which architecture(s)
best describe the accuracy and response times of each participant
in an experiment (Cox & Criss, 2017).

2. Processing architectures

As mentioned above, the goal of the methods discussed in this
article is to yield an estimate of the probability for each participant
that their behavior is a product of a particular type of parallel
processing architecture. In this section, we define those archi-
tectures as well as the likelihood functions associated with each
architecture thatwill allowus to estimate their relative probability.

All of the processing architectures we explore in this paper can
be constructed from systems of linear ballistic accumulators. A
single such accumulator was described above, and in this section
we describe howmultiple accumulators can be used to implement
different parallel processing architectures. All of these architec-
tures are depicted schematically in Table 1, according to the type
of processing interactions and stopping rule. These different archi-
tectures cover the ways in which information from two sources,
labeled source A and source B, can lead to either a positive (‘‘yes’’)
decision or a negative (‘‘no’’) decision. This choice structure – two
possible choices and two sources of information used to make
that choice – mirrors that of the double factorial experimental
paradigm used for systems factorial analysis, as described both
above and below.

2.1. Finishing time distribution for a single accumulator

The predicted distributions of response times and response
probabilities depend on the PDF and CDF of the finishing time
distribution for a single accumulator, that is, the distribution that
describes when (and if) the evidence level of a single accumulator
reaches a threshold. For ease of exposition, we reproduce these
functions from Brown and Heathcote (2008), letting f (t|β, α, R,
v, s) denote theprobability density function (PDF) at time t and F (t)
the cumulative density function (CDF) at time t , given thresholdω,
startpoint variability α, residual time R, mean accumulation rate

v, and accumulation rate standard deviation s (for reference, see
Fig. 1):

f (t|ω, α, R, v, s) =
1
α

[−vΦ(ξ ) + sφ(ξ ) + vΦ(ζ ) − sφ(ζ )] (1)

F (t|ω, α, R, v, s) = 1 +
1
α

{[ω − α − v(t − R)]Φ(ξ )

− [ω − v(t − R)]Φ(ζ )

+s(t − R)[φ(ξ ) − φ(ζ )]} (2)

where

ξ =
ω − α − v(t − R)

s(t − R)

ζ =
ω − v(t − R)

s(t − R)
andφ(·) is the standardnormal PDF andΦ(·) is the standardnormal
CDF.

Note that, as in the original formulation of the LBA (Brown &
Heathcote, 2008), f (t|ω, α, R, v, s) allows for a non-zero (although
typically trivial) probability of a negative accumulation rate, in
which case evidence in a particular accumulator will never attain
the threshold valueω in positive time. It is straightforward tomod-
ify the drift rate distribution to eliminate this feature of the model
if needed (Heathcote & Love, 2012; Terry et al., 2015), although
in practice we have found this feature useful because it acts as a
kind of ‘‘gating inhibition’’ (Purcell, Schall, Logan, & Palmeri, 2012;
Usher & McClelland, 2001) that takes an accumulator ‘‘out of the
running’’ and allows the final response to be determined by one of
the other accumulators. As we describe below, an LBA never acts
alone.

2.2. Independent

When the two information sources A and B are processed inde-
pendently, observed responses and response times are a function
of four separate accumulators: two for each source, one of which
corresponds to the accumulation of positive evidence from that
source (that leads to a ‘‘yes’’ response) while the other corresponds
to the accumulation of negative evidence from that source (that
leads to a ‘‘no’’ response). We use subscripts to denote the param-
eters and finishing time distributions associated with the two ac-
cumulators from each source and superscripts to indicate whether
the accumulator corresponds to positive or negative evidence, like
so:

f +

A

(
t|ω+, α+, R, v+, s+

)
, F+

A

(
t|ω+, α+, R, v+, s+

)
: The PDF and

CDF for the accumulator corresponding to positive evidence
from source A.

f +

B

(
t|ω+, α+, R, v+, s+

)
, F+

B

(
t|ω+, α+, R, v+, s+

)
: The PDF and

CDF for the accumulator corresponding to positive evidence
from source B.

f −

A

(
t|ω−, α−, R, v−, s−

)
, F−

A

(
t|ω−, α−, R, v−, s−

)
: The PDF and

CDF for the accumulator corresponding to negative evidence
from source A.

f −

B

(
t|ω−, α−, R, v−, s−

)
, F−

B

(
t|ω−, α−, R, v−, s−

)
: The PDF and

CDF for the accumulator corresponding to negative evidence
from source B.

Note that we have also made several simplifying assumptions
regarding the parameters that describe each accumulator, specif-
ically that there is a single residual time R associated with all ac-
cumulators and that parameters are shared between both positive
accumulators, regardless of source, and both negative accumula-
tors, regardless of source. These assumptions do not follow from
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Table 1
Schematic depictions of different processing architectures implemented as systems of linear ballistic accumulators.

psychological theory, but rather from model identifiability: In the
absence of selective influence (which we do not assume), it is not
possible to know whether a given positive (or negative) response
was a function of information from source A or source B, so we
can only identify parameters associated with the response rather
than the source. Likewise, even in situations where it is plausible
that one source of information is processed earlier or faster than
the other (cf. Cox & Criss, 2017; Hendrickson, Navarro, & Donkin),
unless selective influence on processing time is assumed, it is not
possible to know which source is faster or slower, so we can only

identify a single residual time. In the Discussion, we consider sit-
uations in which additional experimental manipulations can help
enforce the identifiability needed for these parameters, as well as
how different residual times may be used to implement serial-
like architectures, but at the moment these parameter restrictions
between sources must be considered a constraint of the present
approach. Finally, because the evidence rate standard deviation s
functions as a scaling parameter (though, again, see Donkin et al.,
2009), we set s+ = s− = 1 for all accumulators.
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Two response rules are possible in this context: According to
one rule, a ‘‘yes’’ response is made when either of the two positive
accumulators reaches its threshold (and zero or one negative ac-
cumulator has reached threshold), while a ‘‘no’’ response can only
be made when both negative accumulators reach their thresholds
(and both positive accumulators are below threshold). For brevity,
we label this architecture ‘‘IST’’, since the sources are processed
Independently and ‘‘yes’’ responses are Self-Terminating. The like-
lihoods of a ‘‘yes’’ or a ‘‘no’’ response at time t for this architecture
are

lIST (‘‘yes’’, t) =
{
f +

A

(
t|ω+, α+, R, v+, s+

)
×

[
1 − F+

B

(
t|ω+, α+, R, v+, s+

)]
+ f +

B

(
t|ω+, α+, R, v+, s+

)
×

[
1 − F+

A

(
t|ω+, α+, R, v+, s+

)]}
×

[
1 − F−

A

(
t|ω−, α−, R, v−, s−

)
× F−

B

(
t|ω−, α−, R, v−, s−

)]
lIST (‘‘no’’, t) =

[
f −

A

(
t|ω−, α−, R, v−, s−

)
F−

B

(
t|ω−, α−, R, v−, s−

)
+ f −

B

(
t|ω−, α−, R, v−, s−

)
× F−

A

(
t|ω−, α−, R, v−, s−

)]
×

[
1 − F+

A

(
t|ω+, α+, R, v+, s+

)]
×

[
1 − F+

B

(
t|ω+, α+, R, v+, s+

)]
which, because of the parameter restrictions imposed above for
identifiability, can be simplified to

lIST (‘‘yes’’, t) = 2f +
(
t|ω+, α+, R, v+, 1

)
×

[
1 − F+

(
t|ω+, α+, R, v+, 1

)]
×

[
1 − F−

(
t|ω−, α−, R, v−, 1

)2] (3)

lIST (‘‘no’’, t) = 2f −
(
t|ω−, α−, R, v−, 1

)
F−

(
t|ω−, α−, R, v−, 1

)
×

[
1 − F+

(
t|ω+, α+, R, v+, 1

)]2 (4)

where we have dropped the A and B subscripts since the parame-
ters are shared between the two sources.

Using the same simplified notation, we can express the likeli-
hoods of a ‘‘yes’’ or ‘‘no’’ response at time t under the alternative
stopping rule in which both positive accumulators must reach
threshold to make a ‘‘yes’’ response (while neither negative accu-
mulator has reached threshold) but only one negative accumulator
needs to reach threshold for a ‘‘no’’ response (while zero or one
positive accumulator has reached threshold). This architecture
is labeled IEX since, again, processing is Independent but ‘‘yes’’
responses require EXhaustive processing of the positive evidence
from each source:

lIEX (‘‘yes’’, t) = 2f +
(
t|ω+, α+, R, v+, 1

)
F+

(
t|ω+, α+, R, v+, 1

)
×

[
1 − F−

(
t|ω−, α−, R, v−, 1

)]2 (5)

lIEX (‘‘no’’, t) = 2f −
(
t|ω−, α−, R, v−, 1

)
×

[
1 − F−

(
t|ω−, α−, R, v−, 1

)]
×

[
1 − F+

(
t|ω+, α+, R, v+, 1

)2] (6)

Note that, as intuition would dictate, the IEX likelihoods are just a
mirror image of the IST likelihoods.

2.3. Coactive-‘‘yes’’

When accumulators for positive evidence interact with one
another, we presume this takes the form of ‘‘pooling’’ or partial
co-activation, and so we refer to such architectures as coactive-
‘‘yes’’. We implement this partial co-activation by simple addition:

instead of two separate accumulators for positive evidence from
each source, there is a single positive accumulator that sums the
inputs associated with each source. The principal effect of this is to
increase the signal-to-noise ratio of the evidence distribution, since
it becomes a normal distribution with mean 2v+ and standard
deviation

√
2 (since it is the variances that add, not the standard

deviations). We presume that the parameters associated with the
threshold for positive responses double as well to accommodate
this stronger input, such that there is now a single accumulator for
positive evidence that is described by a threshold 2ω+, startpoint
variability 2α+, mean evidence rate 2v+, and evidence rate stan-
dard deviation

√
2. By increasing threshold as well as signal-to-

noise ratio, this type of pooling captures the idea that coactivation
involves an enhancement in the quality of evidence that is separate
from a simple speedup (which could be modeled by varying just
the drift rates v+ in an independent model). This model is, there-
fore, equivalent to keeping threshold parameters constant (at ω+

and α+) but averaging the inputs between sources, such that the
evidence distribution still has mean v+ but has standard deviation√

2
2 .
Having established the form of interaction involved, we can

express the likelihoods for ‘‘yes’’ and ‘‘no’’ responses at time t ac-
cording to an architecture in which ‘‘no’’ responses are exhaustive
(this architecture is labeled CYST, since processing is Coactive-
‘‘Yes’’ and ‘‘yes’’ responses are Self-Terminating):

lCYST (‘‘yes’’, t) = f +

(
t|2ω+, 2α+, R, 2v+,

√
2
)

×
[
1 − F−(t|ω−, α−, R, v−, 1)2

]
(7)

lCYST (‘‘no’’, t) = 2f −(t|ω−, α−, R, v−, 1)F−(t|ω−, α−, R, v−, 1)

×

[
1 − F+

(
t|2ω+, 2α+, R, 2v+,

√
2
)]

(8)

And we can do the same for the CYEX architecture in which
processing is Coactive-‘‘Yes’’ but ‘‘no’’ responses can be made
whenever a single negative accumulator reaches threshold, mak-
ing ‘‘yes’’ responses EXhaustive:

lCYEX (‘‘yes’’, t) = f +

(
t|2ω+, 2α+, R, 2v+,

√
2
)

×
[
1 − F−(t|ω−, α−, R, v−, 1)

]2 (9)
lCYEX (‘‘no’’, t) = 2f −(t|ω−, α−, R, v−, 1)

×
[
1 − F−(t|ω−, α−, R, v−, 1)

]
×

[
1 − F+

(
t|2ω+, 2α+, R, 2v+,

√
2
)]

(10)

2.4. Coactive-‘‘no’’

Just as it is possible to pool positive evidence, when negative
evidence from each source is pooled into a single accumulator, we
refer to this form of interaction as coactive-‘‘no’’. Just as above, the
result is that instead of two separate accumulators for negative ev-
idence from each source, there is a single accumulator for negative
evidence with response threshold 2ω−, startpoint variability 2α−,
mean evidence rate 2v−, and evidence rate standard deviation

√
2

(so, again, there is an increase in the signal-to-noise ratio for the
accumulated evidence).

In the event that only a single positive accumulator is needed
to make a positive response, we have a CNST (Coactive-‘‘No’’ with
Self-Terminating ‘‘yes’’ responses) architecture with correspond-
ing likelihoods:

lCNST (‘‘yes’’, t) = 2f +(t|ω+, α+, R, v+, 1)
×

[
1 − F+(t|ω+, α+, R, v+, 1)

]
×

[
1 − F−

(
t|2ω−, 2α−, R, 2v−,

√
2
)]

(11)
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Fig. 2. Predictions across different parallel architectures using a single set of parameters for a double-factorial paradigm involving the manipulation of the strength of two
sources, A and B, across four levels (A+

H , A
+

L , A
−

H , and A−

L , same for B) as described in the main text. Note that these predictions are for just one set of parameters and are not
necessarily representative of all parameter settings. Parameter values: ω̄ = 5.6; ν = 0.5; w = 0.5; R = 0.2; βij = 3.8 for each i, j; δij as defined in Table 4.

lCNST (‘‘no’’, t) = f −

(
t|2ω−, 2α−, R, 2v−,

√
2
)

×
[
1 − F+(t|ω+, α+, R, v+, 1)

]2 (12)

And for the CNEX architecture in which processing is Coactive-
‘‘No’’ and ‘‘yes’’ responses are EXhaustive, we have:

lCNEX (‘‘yes’’, t) = 2f +(t|ω+, α+, R, v+, 1)F+(t|ω+, α+, R, v+, 1)

×

[
1 − F−

(
t|2ω−, 2α−, R, 2v−,

√
2
)]

(13)

lCNEX (‘‘no’’, t) = f −

(
t|2ω−, 2α−, R, 2v−,

√
2
)

×
[
1 − F+(t|ω+, α+, R, v+, 1)2

]
(14)

2.5. Coactive-both

The final architecture we consider is a fully coactive one (la-
beled CB for Coactive-Both) in which both positive and nega-
tive evidence is pooled together from both sources into a single
pair of accumulators. In this architecture, responding is always
‘‘self-terminating’’ in that the first accumulator to reach threshold
– whether positive or negative – determines the response. The
associated likelihoods for ‘‘yes’’ and ‘‘no’’ responses at time t are
then:

lCB(‘‘yes’’, t) = f +

(
t|2ω+, 2α+, R, 2v+,

√
2
)

×

[
1 − F−

(
t|2ω−, 2α−, R, 2v−,

√
2
)]

(15)

lCB(‘‘no’’, t) = f −

(
t|2ω−, 2α−, R, 2v−,

√
2
)

×

[
1 − F+

(
t|2ω+, 2α+, R, 2v+,

√
2
)]

(16)

2.6. Architecture predictions

As a supplement to the interactive parallel simulations reported
by Eidels et al. (2011) and Cox and Criss (2017), we report a limited
set of simulations from each of the architectures described above.

These simulations come from a double factorial experiment with
the same form as that described in the example and simulations
below, i.e., two sources (A and B) can each take one of four strength
values, producing 4×4 = 16 total conditions. As shown in Fig. 2(a),
several of these architectures yield similar predictions regarding
the probability of making a positive ‘‘yes’’ response across condi-
tions – particularly those that share the same decision rule (ST vs.
EX) – but they make divergent predictions for how response times
change across conditions (Figs. 2(b) and 2(c)).

Simulations using a range of parameter values for drift rates
and thresholds illustrate, however, that these architectures can
yield a wide range of qualitative forms for critical measures in
SFT like the survivor interaction contrast (SIC) function (Fig. 3). In
particular, SIC functions produced for responses that are generated
by interactive processes are capable of spanning a variety of quali-
tative forms, including those that look like varieties of independent
processing, meaning that qualitative measures are not always suf-
ficient to identify a single architecture (but combining constraints
frommultiple qualitativemeasures, like SIC and capacity functions,
can help on this front Cox & Criss, 2017; Eidels, Donkin, Brown, &
Heathcote, 2010b). In contrast, the methods laid out in this paper
focus on developing quantitative measures of support for each
architecture, which we proceed to describe.

3. Estimation and example

By specifying the LBA implementation of the model architec-
tures described above, it is possible to simultaneously estimate
not only the parameters associated with the accumulators but the
probability with which they are arranged according to each of the
seven architectures. In this section, we use a practical demon-
stration to illustrate how these quantities can be estimated and
interpreted.

3.1. Experiment

The data for this demonstration come from a conceptual repli-
cation of the experiment reported by Cox and Criss (2017), the
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Fig. 3. Examples of predicted survivor interaction contrast (SIC) functions under different architectures under a range of different parameter settings. SIC’s were computed
using response time distributions for ‘‘yes’’ responses in the conditions in which both sources yield evidence that favors a ‘‘yes’’ response, i.e., A+

H B
+

H , A
+

H B
+

L , A
+

L B
+

H , and A+

L B
+

L .

details of which are presented in the Appendix. The goal of both
the previous experiment and the partial replication presented here
was to help characterize the processes by which two kinds of in-
formation are retrieved from long-term eventmemory: Item infor-
mation that pertains to the perceptual and conceptual content of
individual events; and associative information that pertains to how
individual events co-occur. The experiments involved repeated
blocks with two phases each, a study phase during which pairs
of stimuli were presented and a recognition test phase in which
pairs of items were presented and participants were required to
say whether or not that exact pairing of items had been presented
during the study phase.

Thus, the judgments on each test trial entail processing in-
formation from two sources: Retrieving item information in re-
sponse to the test cue – were these items shown during the study
phase? – as well as associative information—were these items
shown together during the study phase? Both experiments imple-
ment a double factorial paradigm in which the strengths of these
two kinds of information are manipulated in each test trial by
either presenting the items more often during the study phase
(thus boosting the strength of item information), presenting the
complete pair more often during the study phase (thus boosting
the strength of associative information), or both. In the original
experiment reported by Cox and Criss (2017), these two repe-
tition manipulations were carried out independently, with the
consequence that repeating a whole pair during study also lead
to more overall repetitions of the items within the pair. In the
present conceptual replication, the strength of item information is
manipulated in terms of the total number of times an item appears

Table 2
Mean probability of giving a positive response to each pair type (standard deviation
in parentheses).

at study, such that an item that appears in a repeated pair is shown
less often by itself. The question is whether this different method
of jointly manipulating item and associative strength leads to the
same conclusions regarding how these two kinds of information
are retrieved.

3.2. Results

The mean response probabilities and response times are given
in Tables 2 and 3, respectively, and illustrate how the proportion
of positive responses tends to increase with the strength of either
source of information. In addition, correct response times are faster
for targets and slower for distractors as the strength of either
source of information is increased.
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3.3. Estimating architecture probability

Despite using the double factorial design necessary for SFT, a
typical systems factorial analysis cannot be performed on these
data for several reasons. First, as is clear from Table 2, error rates
are high in this task, as is typical of many long-term recognition
memory tasks. High error rates are not necessarily a problem for
traditional SFT, where error rates can play a role in measuring
capacity (Townsend&Altieri, 2012), but a high proportion of errors
reduces the number of trials available for estimating the distribu-
tions of correct response times. Indeed, this is the second reason
why traditional SFT methods cannot be used on these data, that is,
there relatively few trials per participant per condition. Moreover,
the number of trials varies between participants since it depends
on howmany study/test blocks they had time to complete. Finally,
it is not clear whether our repetition manipulation selectively
influences only item or only associative memory.

Our analysis estimates two kinds of quantities:

1. The LBA parameters that describe the evidence accumu-
lation rates, response thresholds, and residual time across
each condition in the double factorial experiment.

2. The probabilities with which those LBA’s are arranged ac-
cording to each of the architectures described above.

Further, we estimate these quantities hierarchically, that is, si-
multaneously at the individual level as well as the group level.
Hierarchical estimationhas a longhistory in statistics – particularly
Bayesian statistics – and is especially useful in situations where
there is relatively little data at the individual level because it allows
for so-called ‘‘partial pooling’’ of information across individuals
while still allowing for individual variability. In the simulations
below, we explore the consequences of partial pooling across in-
dividuals for our estimation procedure. And in this example, we il-
lustrate the relationship between maximum likelihood estimation
and Bayesian estimation.

3.3.1. Likelihood function
Above, we specified how each LBA architecture assigns a like-

lihood to a particular response (‘‘yes’’ or ‘‘no’’, denoted by x) at a
particular time t .We assume for simplicity that each response is in-
dependent and is generated by the same set of processes, such that
the likelihood of a set ofN responses {(x1, t1), (x2, t2), . . . , (xN , tN )}
generated by architecture M (one of the seven defined above) is
just theproduct of the individual likelihoods, lM (x1, t1)×lM (x2, t2)×
· · ·× lM (xN , tN ). Let θIST ,k, θIEX,k, θCYST ,k, θCYEX,k, θCNST ,k, θCNEX,k, θCB,k
denote the probabilities that participant k adheres to each of the
seven architectures described above. Then the complete specifi-
cation of the likelihood λk of the Nk responses produced by this
participant is a mixture:

λk = θIST ,k ×

Nk∏
i=1

lIST (xi, ti)

+ θIEX,k ×

Nk∏
i=1

lIEX (xi, ti)

+ θCYST ,k ×

Nk∏
i=1

lCYST (xi, ti)

+ θCYEX,k ×

Nk∏
i=1

lCYEX (xi, ti)

+ θCNST ,k ×

Nk∏
i=1

lCNST (xi, ti)

Table 3
Mean correct response time (in seconds) for each pair type (standard deviation in
parentheses).

+ θCNEX,k ×

Nk∏
i=1

lCNEX (xi, ti)

+ θCB,k ×

Nk∏
i=1

lCB (xi, ti) . (17)

As discussed further below, the mixture probabilities θ represent
the relative probabilities that each architecture under considera-
tion best accounts for (i.e., assigns the highest likelihood too) the
data produced by participant k, similar to a set of Bayes factors, and
corresponds to a hierarchical computation of relative probability,
as described in Chapter 10 of Kruschke (2015).

3.3.2. Parameterization
In addition to the seven architecturemixture probabilities (only

six of which are free since they must sum to one), each partici-
pant k is associated with parameters that describe the evidence
accumulation rates for each response in each condition as well
as parameters for their residual time and response thresholds. To
reduce correlations between the quantities to be estimated, we
estimate a parameter ω̄k (ω̄k > 0) that reflects the sum of the
response thresholds, a parameter νk (0 < νk < 1) that reflects
how much of the threshold is subject to startpoint variability, a
parameter wk (0 < wk < 1) that represents howmuch of the total
threshold is given to the negative accumulator(s), and a parameter
Rk (0 < Rk < min RTk) for the residual time that is bounded
above by the minimum observed response time for participant k.
Thus, the amount of startpoint variability is α+

k = α−

k = νkω̄k,
the response threshold for the positive accumulator(s) is ω+

k =

νkω̄k + (1 − νk)(1 − wk)ω̄k, and the response threshold for the
negative accumulator(s) is ω−

k = νkω̄k + (1 − νk)wkω̄k. Finally, for
each of the sixteen conditions,we also estimate parametersβijk and
δijk that represent the sum and difference, respectively, of evidence
rates for the positive and negative accumulators in the condition
with item strength i and associative strength j.

Owing to the restricted range of each parameter, we estimate
log ω̄k, logit νk, logitwk, logit Rk, and logit θm,k. Thus, each partic-
ipant is described by a vector of 42 parameters: the four (trans-
formed) LBA parameters; sixteen β and sixteen δ parameters;
and six (transformed) architecture mixture probabilities (since the
seventh is not free to vary). These are estimated hierarchically
according to themodel depicted in Fig. 4, which explicitly accounts
for potential correlations between these 42 participant parame-
ters.

3.3.3. Maximum a posteriori estimation
We implemented this model in Stan (Carpenter, Gelman, Hoff-

man, Lee, Goodrich, & Betancourt, 2017), with the code and data
available via theOpen Science Framework at https://osf.io/m6ubq/.
To begin, we found the joint set of group/individual parameters
that maximized the posterior probability (maximum a posteriori,

https://osf.io/m6ubq/
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Fig. 4. Schematic depiction of the way individual parameters are estimated, where
individual participant deflections are constrained to sum to zero across participants
such that each participant’s parameters is the sum of the group mean and their
particular deflection. The ‘‘LKJ’’ prior over correlation matrices is as defined by
Lewandowski et al. (2009). Note that the top-level prior parameters are depicted
as ‘‘default’’ weakly informative, but may be adjusted in light of reasonable prior
information.

MAP). As shown in Fig. 5, this provides a good quantitative account
of the present data, an important pre-condition for interpreting
these parameters. The critical parameters for present interest are
the architecture mixture probabilities (θ ) which are shown in
Fig. 6. Consistent with the results of Cox and Criss (2017), most
participants are best described by the CYEX architecture, i.e., one in
which positive evidence is pooled into a single holistic accumulator
but negative evidence is processed in two separate accumulators,

and all of these accumulators race against one another to deter-
mine the final response. Note that the CYEX architecture helps
to explain the long response times in the I+L A+

L condition: An
exhaustive decision rule for ‘‘yes’’ responses would be expected
to result in longer RT’s for all I+A+ stimuli, but the other target
conditions (I+H A+

L , I
+

L A+

H , and I+H A+

H ) are sped up by the facilitatory
influence of having at least one high-strength source.

3.3.4. Bayesian estimation
We also obtained an estimate of the Bayesian posterior distri-

bution over these parameters (the analyses by Cox & Criss, 2017,
were also fully Bayesian), again using Stan (Carpenter et al., 2017),
obtaining 1000 samples each from 5 Monte Carlo chains following
1000 steps of warm-up (for 5000 total posterior samples). Across
the complete set of 42 group mean parameters and 42 × 42 =

1764 participant deflection parameters (1806 total parameters,
see Fig. 4), the natural logarithm of the R̂ statistics was 0.016 ±

0.050 (values near zero indicate good convergence; Gelman &
Rubin, 1992) and the natural logarithm of the signal-to-noise ra-
tio (absolute value of the posterior mean divided by the Monte
Carlo standard error, where larger values indicate stronger signal;
Kass, Carlin, Gelman, & Neal, 1998) was 2.32 ± 1.40, indicating
generally good convergence of these chains to a representative
sample of the posterior distribution.

Marginalizing over the posterior samples, the resulting poste-
rior architecture probabilities for each participant are shown in
Fig. 7. These estimates reflect the uncertainty around the MAP es-
timates and are far less ‘‘committal’’. In particular, it reflects uncer-
tainty about whether all participants are, indeed, accounted for by
CYEXprocessing (marginalizing over participants, this architecture
receives a probability of 50%) or IEX (which receives a marginal
probability of 35%), that is, whether or not there are interactions
that facilitate making positive responses. Although the balance
of evidence favors such interactions, the value of full Bayesian
estimation lies in its ability to quantify the residual uncertainty
about this conclusion. As we shall see in the simulations below,
these two architectures tend to be harder to tell apart than other
pairs of architectures. There are two possibilities for reducing this
uncertainty: First, as shown in the simulations below, additional
observations can resolve the uncertainty between these two ar-
chitectures. Second, we could incorporate prior information from
the results of Cox and Criss (2017), which found a high posterior
probability for the CYEX architecture in a similar experiment. This
second option, adhering to the Bayesian dictum that ‘‘yesterday’s
posterior is today’s prior’’, would shift the balance of evidence
in favor of the CYEX architecture, but of course could also be
misleading if this prior is inapplicable to the new experiment and
set of participants.

Fig. 5. Predicted mean response probability (left) and correct response time (right) versus observed mean response probability and correct response time. Bars denote 95%
confidence intervals about the mean.
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Fig. 6. Maximum a posteriori estimates of the probabilities with which each participant is best described by one of the seven architectures defined in the main text.
Participants are in the same order as in Fig. 7.

Fig. 7. Marginal posterior estimates of the probabilities with which each participant is best described by one of the seven architectures defined in themain text. Participants
are in the same order as in Fig. 6.

3.3.5. Interpreting mixture probabilities
Because the mixture probabilities θ are computed with respect

to the set of architectures under consideration, they should be
interpreted at most in relative as opposed to absolute terms. In
other words, θM,k should not be conceived as expressing the literal
probability that architectureM is ‘‘true’’ about participant k, hence
we describe these probabilities as indicating which of the archi-
tectures under consideration ‘‘best describes’’ a given participant.
In the same way that a Bayes factor indicates support for one
model relative to another, the probabilities output by our analyses
represent the relative quality of each architecture as a description
of the behavior of each participant.

3.4. Summary

In this section,wewalked through a complete application of our
methods for estimating the probabilities with which individuals
are best described by particular processing architectures, from
experimental design through to the estimated probabilities. We
thus showed how to apply our methods to a double factorial

experiment which would otherwise be unsuitable for traditional
SFT. We also demonstrated the different properties of MAP and
Bayesian estimation, with Bayesian estimation allowing for better
estimates of uncertainty regarding the probabilities with which
each participant engages in a certain kind of processing. In the
next section, we use simulated data to explore various facets of
our methods that can guide researchers who wish to apply them
to their own data.

4. Simulations

We conducted a series of simulations to assess how well it is
possible to correctly identify the LBA instantiations of each of the
parallel processing architectures described above. We wished to
address several questions pertinent to the researcher looking for a
practical way of identifying such architectures:

1. Does the form of any particular architecture allow it to
mimic the predictions of another and thereby get assigned a
higher probability in a spurious manner?
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Table 4
A double factorial design in which two information sources, A
and B, can appear in either target (superscript + ) or distractor
(superscript −) form at two levels of strength, high (H) or low (L).
Values in each cell indicate the mean value of δ for each condition
in our simulations.

2. How much data is needed per participant to achieve rea-
sonable identification accuracy and does this depend on
the amount of heterogeneity within a participant, that is,
the degree to which each individual adheres to a single
architecture?

3. What is the effect of heterogeneity between participants and
how does this interact with partial pooling that results from
using hierarchical estimation?

4.1. Methodology

4.1.1. Double factorial paradigm
All of our simulations are of performance in a double factorial

experiment diagrammed in Table 4, specifically, this is a double
factorial design that includes distractors and with equal rate of
presentation of each stimulus (Houpt et al., 2014). We do not
enforce a particular ‘‘correct’’ decision rule (e.g., OR vs. AND) since
the decision rule is a component of the processing architecture.
As a result, we only classify responses as ‘‘positive’’ or ‘‘negative’’
rather than ‘‘correct’’ or ‘‘incorrect’’.

4.1.2. Individual participant parameters
As described above, there are four parameters related to the

accumulators that are separate from the inputs to those accumula-
tors. These are boundary separation (ω̄k), bias (wk), startpoint vari-
ability (νk), and residual time (Rk). For each simulated participant k,
these four parameters were sampled from distributions that were
informed by our previous applications, to ensure that simulated
behavior was within the realm of typical human performance but
sufficiently variable that the simulations could address the ability
to generalize across a range of parameters:

log ω̄k ∼ N (1.6, 0.49)
logitwk ∼ N (0.024, 0.11)
logit νk ∼ N (0.047, 1.04)
log Rk ∼ N (−1.92, 0.80)

Specifically, the parameters of these distribution were derived
from the (transformed) means and standard deviations for the
corresponding parameters in the experiment analyzed by Cox and
Criss (2017). For each of the 4×4 = 16 conditions,βijk was sampled
independently from a normal distribution with mean of 3.80 and
standard deviation of 1.28 while the δijk parameters were sampled
independently from normal distributions with standard deviation
0.71 and means specified in Table 4. Although our analysis model
explicitly allows for correlations between these parameters across
individuals (see Fig. 4), we did not simulate any across-participant
correlations.

4.1.3. Individual and group consistency
To vary how difficult it is to identify a participant’s processing

architecture, we vary two kinds of consistency: Individual consis-
tency CI is the probability with which each trial produced by a
participant adheres to the modal architecture for that simulated
participant. Thus, ifCI = 1, a participant uses the same architecture
on every trial and if CI = 0, a different architecture is chosen
randomly at uniform from the set of seven we focus on in this
article. By varying CI , we gain insight into how robust the analysis is
to a) mis-fitting of the modal architecture; and b) violations of the
assumption that there is a single best-fitting architecture for each
participant. Group consistency CG is the probability with which
each participant has the same modal architecture, where CG =

1 means every participant has the same modal architecture and
CG = 0 means that the modal architecture for each participant is
sampled randomly at uniform from the set of seven. Varying group
consistency yields insights about how hierarchical estimation can
either help or mislead by allowing sharing of information across
participants.

4.1.4. Selecting a modal architecture
For each simulation, one of the seven architectures is assigned

to be the modal architecture and the probability that a participant
shares that architecture is CG + (1 − CG) 17 , i.e., either it is chosen
directly (with probability CG) or at chance (with probability (1 −

CG) 17 ). Once each participant’s parameters and modal architecture
are selected, we simulate a number of trials per participant per
condition. As described above, the probability that each trial is
produced by the participant’s modal architecture is CI + (1− CI ) 17 ,
i.e., either the trial is consistent with the modal architecture (with
probability CI ) or is chosen at chance (with probability (1 − CI ) 17 ).

4.1.5. What is varied across simulations
Each simulated dataset to which the analysis is applied is char-

acterized by

• the number of participants NP , one of 7, 21, or 63;
• the total number of trials per condition to be divided among

each participant, NT , one of 189 or 630;
• the overall modal architecture, one of the seven we focus on

in this article;
• group consistency CG, one of 0, 1

3 ,
2
3 , or 1; and

• individual consistency CI , one of 0, 1
3 ,

2
3 , or 1.

Obviously, when there is no individual consistency, it is meaning-
less to speak of different amounts of group consistency, so we do
not bother varying the modal architecture or CG when CI = 0.

4.2. Results

We obtained MAP estimates of each simulated participant’s
LBA parameters and architecture probability mixture weights for
each set of simulated data, using the same Stan model described
above. We visualize the main results of our simulations in Fig. 8,
which illustrates the average (over participants and simulations)
probability estimated for each architecture in the form of a set
of confusion matrices. The cell in row i, column j of each matrix
depicts the estimated probability for architecture i for those par-
ticipants whose true modal architecture was j, where darker cells
indicate higher probability. Thus, perfect identification of each par-
ticipant’s generating architecture would be illustrated as a set of
black squares along the diagonal. Overall quality of the fit between
the MAP estimates and simulated data was quite high across all
simulated datasets, with the MAP model explaining an average of
98% of variance in response probabilities (with standard deviation
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Fig. 8. Confusion matrices representing the average probabilities with which participants are identified as being best-described by a particular processing architecture. NP :
number of simulated participants; NT : number of total trials per participant; CG: group consistency; CI : individual consistency. Note that when CI = 0 (top row), there is no
‘‘true modal architecture’’, so those matrices simply depict the estimated architecture probability along their main diagonal, illustrating that the CB architecture is generally
assigned the highest estimated probability. See main text for additional details.

2%), 92% of variance inmean ‘‘yes’’ RT (with standard deviation 4%),
and 92% of variance in mean ‘‘no’’ RT (with standard deviation 5%)
across simulations.Wenowdiscuss how these simulations address
each of the questions set out at the beginning of this section in
turn.

4.2.1. A priori preference
In our simulations with individual consistency CI = 0, we have

the ideal situation for testing what architecture is selected when,
in fact, there is no consistent architecture that describes any one
participant or group of participants. As shown in the top row of
Fig. 8, the fully coactive architecture is preferred in these situations.

But this model does indeed provide an excellent quantitative ac-
count of these data, explaining an average of 98% of the variance
in response probabilities (with standard deviation 2%), 94% of
variance inmean ‘‘yes’’ RT (with standard deviation 3%), and 92% of
variance in mean ‘‘no’’ RT (with standard deviation 3%). Recall that
these simulated data represent a mixture of not only independent
processing, but of various kinds of partial and complete interaction
as well. Only the coactive architecture can capture the various
types of information pooling that these simulated data represent,
so it is sensible that when a single architecture must be selected
to describe the complete set of data, the coactive one is preferred
(regardless of the number of participants or observations). For
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practical purposes, this indicates that a high probability assigned
to the coactive architecture might indicate that, in fact, a mixture
of interactive processes is actually occurring.

4.2.2. Amount of data and individual heterogeneity
Rows 2–4 of Fig. 8 address this question in a situation where

group consistency CG = 0, that is, there is no modal architecture
across the group of participants but there is one for each individual
participant. Accurate identification of individual participant archi-
tectures when CG = 0 is less a function of the amount of data (or
even number of participants) than it is the consistency with which
each participant adheres to a particular architecture (CI ). When
CI =

1
3 and the majority of trials from a participant do not adhere

to the modal architecture for that participant, identification is not
much better than chance and the coactive architecture continues
to be preferred by default. When CI =

2
3 , the majority of trials

are consistent with a single modal architecture and it becomes
possible to assign reasonably high probability to that architecture.
Finally, when CI = 1, accuracy is quite high and our method
is able to correctly identify the architecture that generated each
participant’s data.

4.2.3. Group heterogeneity and partial pooling
Accurate identification at the individual level depends more

on consistency within the individual than on the number of ob-
servations of that individual in each condition (at least up to the
number allowed in our simulations). However, by using hierar-
chical estimation, our methods can partially overcome individual
inconsistency as long as there is some degree of consistency across
individuals, that is, so long as there is a modal architecture that
is more prevalent than others in the sample. This is illustrated in
rows 5–13 of Fig. 8, thosewhere CG > 0. Aswe have seen, when in-
dividual consistency is low (CI =

1
3 ), a coactive architecture tends

to be preferred since it is the only one capable of encompassing
the various forms of interaction mixed together, but this tendency
is mitigated when there are enough participants (NP = 63). This
shows the power of partial pooling in hierarchical estimation—
even if it is difficult to identify the architecture corresponding to
any one individual, consistency across individualsmakes it possible
to pool knowledge across the sample and converge on a ‘‘best
guess’’ as to the modal architecture for each individual. When
CI =

2
3 or 1, identification of the modal architecture is nearly

perfect regardless of the level of group consistency or the number
of participants or trials.

4.2.4. Some confusions are easier than others
We have already seen that these simulations indicate that,

when individual participants do not strictly adhere to a single
modal architecture and there is not enough pull from the hier-
archical structure of the data, a coactive architecture tends to
be assigned much of the probability ‘‘by default’’ because it is
the only single architecture that can capture both facilitatory and
inhibitory interactions (which are mixed in by the structure of the
simulations). However, it is worth noting a few other architectures
that seem to be more easily confused with one another—these
appear on the off-diagonals of the confusion matrices in Fig. 8.
First, when data was generated by a IST architecture, the CNST
architecture can still be considered more likely; second, when
data was generated by a IEX architecture, the CYEX architecture
is sometimes consideredmore likely. These two types of confusion
– which only occur when CI < 1 – are somewhat sensible in that
they entail the same decision rules and differ only in their degree
of processing interaction. This is reminiscent of the non-committal
results of the Bayesian estimation example above which favored
CYEX on average but still assigned reasonable probability to IEX.
Our simulations show that these confusions can be resolved by
additional data either by collecting more trials per participant or
increasing the number of participants.

4.3. Summary

We summarize our simulation results into two key points
which should prove useful to researchers using our techniques to
help identify processing architectures:

1. Accurate identification is possible evenwith as fewas 3 trials
per condition per participant (whenNP = 63 andNT = 189)
so long as

(a) most of each participant’s trials (in our simulations, at
least two thirds of them) were generated by the same
architecture; and/or

(b) most of the participants in the sample share the same
modal architecture.

2. A coactive architecture may be identified as the most prob-
able when behavior is in fact a mixture of both interactive
and non-interactive architectures. Because this arises from
the constraint that each individual be described by a single
architecture, we discuss below the possibility of identifying
mixtures of processing within an individual, which can help
resolve this ambiguity.

3. Some architectureswith the same decision rule but different
kinds of interactivity can be confused with one another,
but this confusion can be alleviated either by increasing the
number of participants or the number of trials per partici-
pant per condition.

Unfortunately, we can only offer some rules-of-thumb to check
for conditions 1a and 1b in practical settings. In general, careful
inspection of data from each participant should be made prior
to analysis to detect whether there are individuals that show
qualitative departures from one another or within their own data,
such as by looking for multimodal distributions of accuracy and/or
response times both within each participant and across partici-
pants. But, of course, if data really are as sparse as 3 trials per
condition per participant, it may not be possible to check for these
features, in which case the analysis must be taken with a grain of
salt. In all cases, but especially thosewith sparse data, full Bayesian
estimation is advisable in order to get a handle on the degree of
uncertainty in the results, which can serve as a guide to howmuch
‘‘salt’’ may be needed.

5. Discussion

We have described, applied, and investigated a method for
using hierarchical estimation and systems of LBA’s to help re-
searchers identify the type of processing architecture employed by
participants in a double factorial experiment. We have provided
code in Stan (Carpenter et al., 2017) that researchers can use for
their own purposes. Thesemethods cannot supplant the full power
of SFT, but they can help to supplement it, particularly in situations
where it is not possible to apply traditional SFT methods. These
situations include cases with high error, relatively few trials per
participant, and lack of selective influence. In addition, thesemeth-
ods provide a set of probabilities for each participant that directly
assess the degree of statistical support for different processing
architectures.

5.1. Extensions to other architectures

Although we explored seven varieties of parallel architectures
that run the gamut from complete independence (IST and IEX) to
complete coactivity (CB), many other architectures may be spec-
ified using systems of LBA’s. Although the distributions used in
the original formulation of the LBA have proven sufficient for
the applications we have explored so far, as mentioned in the
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model description it is possible to formulate accumulators using
different distributions of evidence accumulation rates and/or start-
point variability (e.g., Heathcote & Love, 2012; Terry et al., 2015).
Another straightforward extension would be to allow for more
than two sets of accumulators, as might happen in an experiment
where three or more sources of information were manipulated
(e.g., a triple, quadruple, etc. factorial design). Many measures
from SFT and other approaches have been extended to these sit-
uations (Yang, Fifić, & Townsend, 2014; Zhang & Dzhafarov, 2015).

5.1.1. Estimating the number of information sources
There may be situations in which an experimenter seeks to

manipulate sources of information that could be further decom-
posed, in the way that color might be decomposed into separate
channels for hue and saturation. In such a setting, it could be
possible, in principle, to estimate the number of such sources
of information involved in the same way that we estimate the
probability with which each participant adheres to a particular
processing architecture. This comeswith a caveat: Just as we saw a
coactive architecture tended to be assigned a high probability even
when behavior was actually produced by a mixture of interactive
and independent architectures, allowing too much freedom in
specifying different architectures can lead to a situation in which
an architecture is preferred simply due to its flexibility. In other
words, because our methods involve parametric models whose
predictions are constrained in form, any discrepancy between the
model and behavior can lead to mis-identification. Thus, while we
remark on this possibility, we caution researchers that this route
can be a dangerous one to travel.

5.1.2. Serial and serial-like architectures
An obvious shortcoming of the present set of analyses is that

we did not consider serial models. While systems of LBA’s lend
themselves naturally to specifying parallelmodels, the convolution
involved in serial likelihoods means that numerical methods must
be used in that case. In addition, as is clear from Fig. 3, traditional
signatures of serial processing like a flat SIC can be produced by
interactive parallel architectures, increasing the well-known po-
tential formimicry between thesemodel classes (Townsend, 1976;
Townsend & Thomas, 1994). Finally, it is not clear how to specify
interactions for serial models, except perhaps as a kind of feed-
forward interaction where the output of an earlier stage is fed into
a subsequent stage in the manner of a ‘‘cascade’’ or ‘‘continuous-
flow’’ system (Ashby, 1982; McClelland, 1979; Townsend & Fikes,
1995).

One way to capture some aspect of serial processing, alluded
to in the model specifications above, would be to allow different
sets of LBA’s to have different residual times, implying that they
are staggered in time (Hendrickson et al.). As we noted above,
however, this introduces an identification problem in that it may
not be clear which accumulators are earlier or later, but this could
be solved either by a theoretical assumption (enforcing a relative
processing order) or by experimental manipulation. For example,
one might withhold presentation of one information source until
after the other to enforce a particular order, or including condi-
tions that require speeded responding may allow a researcher to
infer the relative processing order by examining whether speeded
responses indicate that only one source is processed prior to re-
sponding (e.g., Donkin & Little, 2014).

5.2. Other experimental paradigms

Throughout this article, we have focused on a double factorial
experimental design, particularly one with four levels of strength
for each factor. This is largely due to the fact that our methods
are designed as a supplement to SFT, and this is the paradigm for

which most of its measures are designed. In principle, however,
our analyses can be applied to data from partial-factorial designs
(i.e., thosewithmissing cells) aswell as designswithmore or fewer
than the three or four levels per factor typically used in SFT. The
reason for this flexibility is because our methods do not depend
on having particular stochastic dominance relationships that are
prerequisites for some SFT measures (like the SIC) and which are
the intended outcome of the double-factorial manipulation. But
while our methods do not depend on this qualitative feature of
the data, our methods do require that strength manipulations
produce a sufficiently wide range of effects to allow for different
architectures to make different predictions.

In addition to double-factorial designs, we have focused on
tasks that require discrimination between two types of stimuli,
i.e., those that require a positive (‘‘yes’’) response versus those
that require a negative (‘‘no’’) response. A detection paradigm (as
discussed in Donkin & Little, 2014) may only entail a positive
response upon detection of any kind of target stimulus, with no
negative responses at all. One way to apply the present approach
to such a paradigmwould be to simply eliminate the accumulators
associated with a negative response, such that only three architec-
tures remain in the two-source case (IST, IEX, and coactive), but this
would require ensuring that accumulation rates in no-target trials
were extremely low, otherwise a responsewould bemade on every
trial. An alternativewould allow for an implicit set of ‘‘no response’’
accumulators that would allow for a response to be withheld if
they won the race. While it seems cognitively plausible that there
would be a ‘‘no response’’ accumulator for each information source
– like the ‘‘no’’ response accumulators in the models above – in
practice it might be difficult to infer whether those accumulators
interact since, by definition, their finishing times are not directly
observed (cf. Logan, Van Zandt, & Verbruggen, 2014).

5.3. Within-participant process mixtures

Ourmethods have shared the assumption of traditional SFT that
each individual’s performance in a given task can be characterized
as having been generated by a single processing architecture. But
we noted in the Introduction the possibility that individuals rep-
resent a mixture of processes and saw in our simulations that, in
the event that a participant involves amixture between interactive
and independent processing, the interactive architecture tends to
be preferred. But this preference is conditional on the assumption
that each individual adheres to a single architecture throughout.
Just as we estimate the probability with which each individual is
best described by any one architecture, it is entirely possible to
extend this idea to estimate the probability with which each trial
from each participant is best described by a particular architecture,
as in multinomial process tree models (e.g., Klauer & Kellen, 2018;
Riefer & Batchelder, 1988). The downside of this approach is that
the additional variability associatedwith individual-levelmixtures
propagates toward all estimates, requiring more observations per
individual to attain a reasonable degree of certainty.

5.4. Bridging the gap between large- and small-N

The recent and ongoing ‘‘replication crisis’’ in the psychological
sciences has often been attributed, in part, to the use of samples
that are too small to reliably detect the effects of interest (e.g., Open
Science Collaboration, 2015). However, many of the most robust
results in psychology, particularly in psychophysics, have come
fromexperimentswith very fewor even a single participant (Smith
& Little, 2018). What distinguishes these robust small-N results
from fickle large-N results is that the small-N experiments began
from a set of well-specified theories about how different percep-
tual and cognitive processes yield particular patterns of behavior.
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Indeed, this is the chief power of SFT, that there is a strong and
clear relationship between theory, experimental design, and data.
While our use of parametric models like the LBA restricts the kinds
of theories that can be tested using our methods, it enables esti-
mation to be done in a hierarchicalmanner. Hierarchical modeling
bridges the gap between large- and small-N by respecting individ-
ual differences while letting individual estimates be informed by
the rest of the group.

5.5. Utility for online experiments

Hierarchical estimation, coupledwith strong theory, iswhy suc-
cessful identification using our methods is possible even with few
trials or few participants. This fact becomes especially important
when considering the growth of online data collection in many
fields of psychology. While this enables larger and more diverse
samples than are possible via traditional laboratory testing, often
online data collection is constrained to collect relatively few trials
per participant (to avoid attrition) and evinces greater variabil-
ity between participants due to their different environments and
backgrounds. Hierarchical estimation and strong theory – of which
our methods are a prime example – can enable researchers to
extract robust conclusions, at least at the group level, from such
potentially variable data.

5.6. SFT for all?

The primary motivation behind the work discussed in this arti-
cle was to allow researchers working in domains that are normally
unsuited to SFT – domains with high error rates, relatively few ob-
servations per participant, and no guarantee of selective influence
– to apply some of the logic of systems factorial technology. While
the methods discussed in this article are not perfect and lack the
generality of traditional SFT, we believe these are reasonable prices
to pay in exchange for the ability to draw principled conclusions
about the structure of psychological processes in these domains.
It is, however, critical for researchers who apply our methods to
understand that they are only a guide and not a final answer: they
assume that the LBA provides a good quantitative account of their
data, that only parallel architectures are worth considering, and
that the various kinds of interactions that can occur duringprocess-
ing can be captured by channel summation (and thesemethods can
be fooled if participants in fact represent a mixture of independent
and interactive processes). The results of our methods should al-
ways be checked against other methods (other analyses or simula-
tions) if possible, as in our own prior work (Cox & Criss, 2017). Still,
we believe that the methods we describe, limited as they are, can
help advance psychological sciencemore generally by bringing the
power of SFT – rooted in a strong connection between theory and
data – to regions it would otherwise be unable to explore.

Appendix. Experimental methods

This Appendix presents the details of the experiment the data
from which were analyzed for example purposes in the main text.

A.1. Participants

57 undergraduate students at Syracuse University participated
in this study in exchange for course credit, in accord with local
Institutional Review Board policy.

A.2. Materials

The stimulus materials were identical to those used by Cox
and Criss (2017), namely, images of indoor and outdoor scenes
used by Goh, Siong, Park, Gutchess, Hebrank, and Chee (2004)
and Konkle, Brady, Alvarez, and Oliva (2010). 512 images were

Table A.1
Design of study lists that separatelymanipulate item strength (total number of item
presentations) and associative strength (number of whole pair repetitions) with
numbers referring to a specific image half.
Paired
items

Number of
isolated item
repetitions

Number of
whole pair
repetitions

Total number
of item
presentations

1, 2 2 3 5
3, 4 4 1 5
5, 6 2 3 5
7, 8 2 3 5
9, 10 4 1 5
11, 12 4 1 5
13, 14 0 3 3
15, 16 2 1 3
17, 18 0 3 3
19, 20 0 3 3
21, 22 2 1 3
23, 24 2 1 3
25, 26 2 3 5
27, 28 4 1 5
29, 30 0 3 3
31, 32 2 1 3

Table A.2
Implementation of a double factorial design that separately manipulates item
strength (I) and associative strength (A). Numbers refer to the items shown at study,
with apostrophes denoting the half of each image item that was not shown at study.

selected from these sets to serve as a pool of stimuli, according to
the similarity criteria described by Cox and Criss (2017).

A.3. Design

We use the same general double factorial design as in Cox and
Criss (2017), just with a different way of manipulating item and
associative strength. Within the study phase (see Table A.1), high
associative strength pairs were shown three times over the course
of the study list while low associative strength pairs were shown
only once. Item strength was determined by the total number of
appearances of the item during study, including appearances that
occur as part of a pair. To increase this number and thereby increase
the strength of item information in memory, we presented each
item of a pair in isolation in the study list, with the number of
such repetitions depending on the number of times the whole pair
containing the item had been presented, as given in Table A.1.

Test lists consisted of 16 pairs of items as described in Table A.2.
The design of the test listmatches a double factorial paradigmwith
distractors (see Houpt et al., 2016), such that there are four types
of pair: I+A+ pairs in which both the item (I) and associative (A)
information in the test pair matchwhat had been studied (i.e., they
are target items and should receive a ‘‘yes’’ response). I+A− pairs
are formed by rearranging the left and right items between two
studied pairs with the same level of item and associative strength;
the result is a test pair in which the item information matches
what had been studied, but the associative information does not.
I−A+ pairs are formed by taking a studied pair and replacing the
each image in the pair with the unseen half of that image, with the
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result that the item information no longer matches what had been
studied but the associative information does. Finally, I−A− pairs
are formed by applying both of these operations, first rearranging
the left and right items of a studied pair then replacing those items
with the unstudied half of each image.

A.4. Procedure

After providing informed consent, each participant engaged in
between 5 and 11 blocks (depending on how much they could
complete in the allotted time) consisting of a study and test phase
as described above. Each block began with a screen that instructed
participants that they would be shown a sequence of image pairs
and that they should try to remember not only the images in each
pair, but which images appeared together. In addition, participants
were informed that they would only need to remember the most
recent set of pairs, since items would never appear in more than
one block (which was ensured by the randomization procedure).
After a minimum of 15 s, participants could proceed to the study
phase in which each pair was presented for 1.5 s with a 0.5 s
blank interval in between. The two image pairs were horizontally
separated on the screen by a small blank space and had a slight
random vertical offset from one another, with the aim of encour-
aging participants to process the images as separate entities (rather
than as two parts of the same image) as well as minimizing visual
masking between trials. After all study stimuli were presented,
participants were shown an instruction screen that told them to
respond ‘‘yes’’ (by hitting either the F or J key, randomly deter-
mined for each participant) only if a test pair exactly matched a
pair they had just studied, otherwise they should respond ‘‘no’’
as rapidly and accurately as possible. After a minimum of 15 s,
participants could proceed to the test phase. Each test trial began
with a fixation cross in the center of the screen for 0.5 s, followed
by a 0.5 s blank screen, then the presentation of the test pair
(which was, as at study, horizontally centered but with a small
random vertical offset between the two images). After responding,
participants received feedback about whether theywere correct or
incorrect for a minimum of 1 s if they were correct or 1.5 s if they
were incorrect. In addition, if their response took longer than 4 s
from the onset of the test pair, feedback included an instruction
to try to respond more quickly; if their response took less than
0.3 s, feedback included an instruction to try to take more time to
respond and feedback was shown for an additional 3 s. A random
interval between 0.25 and 0.75 s preceded the onset of the next
test trial.

A.5. Exclusion criteria

Prior to analysis, we excluded participants who gave more
positive responses to lure items than target items as well as any
participant who did not produce at least one correct response
in each cell of the double factorial design, under the assumption
that such participants were not following instructions. We also
excluded any trialwith response time less than 200ms (since these
could not reflect processing of the test pair) or greater than 10 s
(since these were likely to be contaminated by other processes).
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