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The development of memory theory has been constrained by a focus on isolated tasks rather than the processes
and information that are common to situations in which memory is engaged. We present results from a study
in which 453 participants took part in five different memory tasks: single-item recognition, associative
recognition, cued recall, free recall, and lexical decision. Using hierarchical Bayesian techniques, we jointly
analyzed the correlations between tasks within individuals—reflecting the degree to which tasks rely on shared
cognitive processes—and within items—reflecting the degree to which tasks rely on the same information
conveyed by the item. Among other things, we find that (a) the processes involved in lexical access and
episodic memory are largely separate and rely on different kinds of information, (b) access to lexical memory
is driven primarily by perceptual aspects of a word, (c) all episodic memory tasks rely to an extent on a set
of shared processes which make use of semantic features to encode both single words and associations
between words, and (d) recall involves additional processes likely related to contextual cuing and response
production. These results provide a large-scale picture of memory across different tasks which can serve to
drive the development of comprehensive theories of memory.
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The goal of research into human memory is to understand the
information that is contained in memory as well as the processes
used to encode, store, retrieve, and make use of that information.
These various aspects of memory are only visible when filtered
through particular tasks, that is, specific sets of stimuli, decisions,
and actions. Many commentators (e.g., Hintzman, 2011) have
recently noted, however, that a focus on individual tasks has
impeded progress toward a more comprehensive picture of human
memory. While we believe that such focus is critical to the larger
research program by which scientific understanding of memory is
developed, we believe it is equally crucial to periodically take a

step back to appreciate how the fine-grained images provided by
particular tasks can be overlaid to form a cohesive mosaic of
human memory. For example, the literature studying lexical re-
trieval is mostly separate from that studying episodic retrieval,
making it hard to know what is the relationship between retrieval
from semantic and episodic memory (cf. Hintzman & Curran,
1997; Nelson & Shiffrin, 2013). Similarly, a broad understanding
of memory is crucial for understanding what diagnostic tasks
actually indicate regarding memory deficits, such as those that
result from age, injury, or disease (e.g., Healey & Kahana, 2016;
Siedlecki, 2007). The purpose of the present work is to examine
how performance on different memory tasks is correlated with
respect to both the processes engaged by individual participants
and the information conveyed by particular items.

In practice, it is difficult to disentangle the roles played by the
information in memory and the processes acting on that informa-
tion. Consider, for example, an episodic recognition task in which
a participant studies a list of words and is tested by showing her a
word and asking her whether or not it was on the list she just
studied. If she says yes, is that because (a) she was able to find a
match between the word on that trial and one stored in memory?
Or was it because (b) that word generally seems familiar and she
would have said yes to it regardless? If the answer is 1, we can
attribute performance on that trial to the memory processes she
engaged in the episodic recognition task. If, however, the answer
is 2, performance is attributable more to the information contained
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in the item presented on that trial and how it was made manifest by
the episodic recognition task. To resolve this ambiguity, one must
collect many observations of each individual participant interact-
ing with many different items as well as each item being processed
by many different individuals. In this way, we can distinguish
between effects that are consistent with respect to each item
(irrespective of the participant) from those that are consistent with
respect to each individual (irrespective of the item).

A single task, even with many observations of items and indi-
viduals, still only represents one filter through which to view
memory. To build up a more complete mosaic, we must examine
how memory performance is related between different memory
tasks. For example, if participants who demonstrate good recall
ability also demonstrate good recognition ability—that is, if per-
formance on these tasks is correlated at the level of individuals—
this indicates that these two tasks rely on similar memory pro-
cesses. If, however, individuals’ performance on these tasks is
unrelated, we can infer that they rely on different memory pro-
cesses. We can draw analogous inferences with regard to the
information contained in items that is relevant to memory: If an
item is associated with good performance in both recognition and
recall, that means it carries information that supports the perfor-
mance of both of these tasks. Conversely, if recognition and recall
of an item are unrelated, then these two tasks make use of different
aspects of the information conveyed by the item. Of course, a
correlation—or lack thereof—between any given pair of tasks
could still result from other sources of variability or from domain-
general characteristics (intelligence, engagement, motivation, etc.),
which is why it is critical to examine not just the pairwise corre-
lations among tasks but the entire pattern of correlations among
many tasks to better identify meaningful correlations and reject
spurious ones. The present study is the first to jointly examine the
patterns of correlations across multiple memory tasks for both
individuals and items.

Individual Memory Manifest in Different Tasks

There have been some previous efforts to study how memory is
deployed across tasks. Perhaps the closest analogue to the present
study is one reported by Underwood, Boruch, and Malmi (1978).
In their study, participants engaged in a variety of experimental
tasks, including several different types of memory tasks with
several different types of verbal materials designed to emphasize
particular attributes of those materials (Underwood, 1969). For
example, each participant would complete several blocks of free
recall, some with lists of random words, some with lists of paired
semantic associates, and some with lists consisting of exemplars of
a single category. Factor analysis of outcome measures from each
of these tasks led Underwood et al. (1978) to conclude that five
factors best explained their results; these five factors generally
represented different task types (paired associates, free recall,
memory span, recognition, and verbal discrimination) and did not
discriminate between the attributes of the items used in each task.
As the original authors argued, the fact that their study was
sensitive to task type and insensitive to the information present in
each task resulted from the fact that task and information were
confounded within an individual: Participants likely engaged in
different strategies when, for example, all study words were se-
mantically related from when they were random. Our methods

mitigate against this possibility by informing participants of the
task only after each study phase.

In contrast, certain aging studies have identified factors corre-
sponding to the information contained within a memory task, but
without any corresponding task differences. Siedlecki (2007) con-
ducted recognition, cued recall, and free-recall tasks on a popula-
tion with a large age range using verbal, figural (line drawing), and
spatial (grid location) stimuli. She found that, when all tasks and
information types were analyzed simultaneously, three factors
emerged corresponding to the three types of to-be-remembered
information. For each information type, correlations in perfor-
mance among the three tasks were quite high; only in the verbal
domain was there evidence for separation between tasks, specifi-
cally for a distinction between free recall and cued recall/recogni-
tion. These results indicate that the same memory processes are
engaged across all types of stimulus materials—hence all tasks are
strongly correlated—with the principal differences due to the kind
of information that is stored in memory.

Studies of the relationship between memory and intelligence
lend support to the idea that all memory tasks rely, to an extent, on
a single set of core processes. Unsworth (2010) found that a model
in which factors corresponding to working memory, recognition,
and recall were all related by a single higher-order memory factor
provided the best account of his data and that memory was more
strongly related to fluid intelligence than crystallized intelligence.
To the extent that memory tasks relied on crystallized intelligence,
it is likely attributable to the fact that they employ verbal materials,
and vocabulary knowledge is a key component of crystallized
intelligence.

Overall, previous studies investigating the nature of correlations
between memory tasks have found (a) that while different memory
tasks can often be distinguished, they tend to rely on a shared set
of underlying processes, and (b) that different kinds of information
can yield differences in memory performance, but only when those
difference are extreme (words vs. line drawings) or when they are
not confounded with task. Although most subsequent modeling
developments have focused on individual memory tasks, the global
memory models of the 1980s, such as SAM (Search of Associative
Memory; Gillund & Shiffrin, 1984; Raaijmakers & Shiffrin, 1981)
or the Matrix model (Humphreys, Bain, & Pike, 1989), began from
the assumption that all memory tasks rely on the same information
structures encoded in memory. Such structures include associa-
tions between items and other items and between items (or sets of
items) and the contexts in which they occur. Tasks were assumed
to differ only to the extent that they required different retrieval
cues, for example, recall tasks involved primarily context cues
whereas recognition tasks required both context and item cues.
These models, however, made no specific commitments to how
different kinds of item information (e.g., modality or semantic
relations) were encoded in memory or how they affected retrieval
cuing, but it seems reasonable to assume that when the task
requirements are known beforehand (as in the study of Underwood
et al., 1978), it becomes impossible to distinguish between encod-
ing and retrieval effects. As described below, our study is designed
to explicitly separate variability attributable to the use of different
cognitive processes from that attributable to the information car-
ried by different memory items, thereby helping to resolve a
number of puzzling contradictions in how different items are
treated in different situations.
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Item Information Relevant to Memory

Much research has focused on the effect that different aspects of
an item may have on subsequent memory for that item, so much
that we cannot possibly review that entire literature here. We can
nonetheless touch on some important normative characteristics of
verbal stimuli that have been found to have robust effects on
human memory, and which we report for our stimuli below. First
among these is word frequency: In lexical decision tasks, high-
frequency words are correctly identified more often and faster than
low-frequency words (Scarborough, Cortese, & Scarborough,
1977); in recognition memory, low-frequency words are correctly
recognized and correctly rejected more often than high-frequency
words (Glanzer & Adams, 1985); whereas in free recall, high-
frequency words are correctly recalled at a higher rate than low-
frequency words in pure lists but not in mixed lists, where low-
frequency words are typically recalled more correctly (Gregg,
1976). This discrepancy in the effect of frequency across tasks
hints that different tasks may rely on different aspects of an item,
even if they share a certain degree of processes. It may also
indicate artifacts of how these frequency categories were chosen,
since word frequency has been found to have a nonmonotonic
relationship to both recognition (Hemmer & Criss, 2013) and
recall (Lohnas & Kahana, 2013) performance when it is treated as
a continuous, rather than categorical variable.

Complicating this picture, however, is the fact that frequency—
like many normative characteristics of words—is highly correlated
with many other aspects of a word which have been found to have
effects on memory. Low-frequency words tend to be more ortho-
graphically distinctive than high-frequency words; in addition to
effects of overall word frequency, lower letter-position frequency
yields superior recognition performance (higher hit rates, lower
false alarm rates) than words with high letter-position frequency
(Malmberg, Steyvers, Stevens, & Shiffrin, 2002). High-frequency
words also tend to be used in more semantic contexts than low-
frequency words; high context variability, in addition to frequency,
leads to lower recognition accuracy (Steyvers & Malmberg, 2003),
and it has been argued that context variability accounts for most
effects often attributed to word frequency (Adelman, Brown, &
Quesada, 2006). Indeed, pure frequency alone—as measured by
number of laboratory exposures—appears to lead to a bias effect
(higher hit rate and higher false alarm rate) rather than the mirror
effect reported for normative word frequency, arguing that “fre-
quency” may be a misnomer with regard to the underlying con-
struct that affects memory for words (Maddox & Estes, 1997).

All of these effects are, however, subject to what is known as the
“language-as-fixed-effect” fallacy (H. H. Clark, 1973). This fal-
lacy comes about when a small sample of words is separated into,
for example, high and low word frequency or high and low letter
frequency, and effects attributable to this classification of the
sample are generalized to all of language without respecting the
fact that the studied words are not necessarily a random sample
from the entire lexicon (what counts as “high” or “low” is always
relative to the particular sample). Clark suggested a way to cir-
cumvent this fallacy, namely by examining the effects of single
items without resorting to grouping them into potentially arbitrary
or error-prone categories like high- or low-frequency. Freeman,
Heathcote, Chalmers, and Hockley (2010) found that applying this
kind of analysis to episodic recognition of words supported the

presence of a frequency mirror effect but showed that overall
effects of orthographic distinctiveness disappeared when item-
specific effects were taken into account. We take a similar ap-
proach in our analyses, first estimating effects at the level of single
items and then correlating these item effects with their normative
lexical characteristics, going beyond their foundational work to
examine item effects across multiple tasks and considering a wider
array of item properties.

Overview of the Present Study

Of particular note is that previous studies of the relationships
between processes and information across memory tasks have
tended to examine only one of these dimensions at a time: they
assess either the correlations between individual performance
(memory processes) or the correlations between item performance
(information in memory), but not both. As we noted above, this
makes it difficult to know why two tasks may be related. The
present work jointly analyzes correlations among individuals and
among items in the same dataset, allowing us to properly attribute
correlations to the information conveyed by items or the processes
used by individuals in a data-driven manner.

By using the same set of items throughout the experiment, we
obtain multiple observations of performance for each item in each
task. We therefore estimate performance at the level of individual
items, rather than relying on externally defined normative charac-
teristics (e.g., frequency, concreteness, etc.). Although we will
subsequently relate the estimated memory qualities of each item to
these normative word properties, estimating these qualities is done
entirely in a data-driven, bottom-up manner. A drawback of this
approach is that we are left with somewhat greater uncertainty at
the level of individual items, because estimation is not constrained
by normative word properties. This is balanced against the advan-
tage that such properties are themselves subject to estimation error
(e.g., from subjective ratings like concreteness) and reflect a va-
riety of decisions that can affect the construct validity of the
measure (e.g., which corpus to use for obtaining frequency
counts). By eschewing the explicit use of these measures in our
estimation procedure, we avoid these problems and ensure that our
conclusions are based more on the data at hand than on the
vagaries of these normative measures.

Finally, most prior studies of the relationship between different
memory tasks at the level of individuals—such as that by Under-
wood et al. (1978), discussed above—have used different proce-
dures for both the study and test phases of each task. As a result,
it is not possible to attribute correlations between tasks to either
encoding or retrieval processes or both. For example, Underwood
et al. (1978) studied free recall of abstract and concrete words
using two different tasks with different compositions of study lists.
Any differences or similarities between these tasks could, there-
fore, be attributed to study strategies adopted by participants in
each task, to memory search strategies at retrieval, or to the
information contained in either concrete or abstract words that
yields different retrieval ability or associative encoding for each
word type. In contrast, although we use different test phases for
each task, the study phase is identical and all tasks draw their
stimuli from the same pool of items. As a result, we can be
confident that any differences between tasks at the level of indi-
viduals reflect the operation of different retrieval processes, rather

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

547MEMORY ACROSS TASKS, ITEMS, AND INDIVIDUALS



than task-specific study strategies or the particulars of the items
used in that task.

Method

Participants

Four hundred sixty-two undergraduate students at Syracuse Uni-
versity participated in exchange for course credit after providing
informed consent in accord with local Institutional Review Board
policy (IRB #13–003). Seventy-two participants did not finish the
full experiment because of time constraints or computer malfunc-
tion but are included in the set of analyzed data because the
Bayesian hierarchical techniques we employ do not require a
balanced design (although there is greater residual uncertainty
regarding the parameters of a participant who contributes less
data). We did, however, exclude nine participants who always
gave the same response (i.e., always “YES” or “NO”) in one or
more of the three binary choice tasks (LD, SR, or AR). The
following analyses are, therefore, based on data from 453 individ-
ual participants.

Materials

We extracted a set of 924 words from the Touchstone Applied
Science Associates (TASA) corpus (Landauer, Foltz, & Laham,
1998). These words were not chosen to be within any particular
range on the values we are about to describe, but instead to be a
diverse sample of words that would span a wide range of potential
measures, thereby maximizing the information we could infer
about item variability. For the lexical-decision task, pseudoword
foils were created using the Wuggy pseudoword generator (Keu-
leers & Brysbaert, 2010). Each word in our stimulus set served as
a “base” that was used to generate three similar pseudoword
candidates. An independent rater selected one of the three words to
maximize “wordiness.” The result was that each word in the set
had a corresponding similar pseudoword. For example, the word
“ACCIDENT” yielded the pseudoword “ADVIGENT.”1 As men-
tioned in the Author Note, the complete set of stimulus words,
their pseudoword counterparts, and relevant normative statistics
are provided online via the Open Science Framework at https://
osf.io/dd8kp/ but are summarized here in Table 1.

Word frequency. The frequency with which a word is en-
countered has typically been measured by counting the number of
times the word appears within a large representative sample of text
(a “corpus”). The standard frequency measure used in memory
research are the counts computed by Kuçera and Francis (1967,
“KF”). However, the corpus on which these counts are based is
now rather outdated, so we also include the frequency counts
measured on the more recent HAL corpus (Burgess & Livesay,
1998).

Orthography. An obvious property of a word’s orthography
is its length, a simplistic measure of a word’s visual complexity.
We can go beyond this by considering how unusual a word’s
spelling is relative to other words in the lexicon: The OLD20
measure (Yarkoni, Balota, & Yap, 2008) reports the average
orthographic Levenshtein distance (OLD) between a word and its
20 closest neighbors (in terms of OLD). OLD is the minimum
number of letter additions, deletions, and substitutions needed to

transform one word into another, and therefore measures how
differently two words are spelled. The average of the 20 lowest
distances from a word thus reflects how regular (low OLD20) or
distinctive (high OLD20) its spelling is. OLD20 is correlated with
word length, since longer words have more letters that need to be
changed to transform them into other words.

Phonology. Just as with the orthography of a word, we can
measure the auditory length and relative unusualness of a word’s
pronunciation using the number of syllables and “Phonological
Levenshtein Distance.” Just like the OLD20 measure, PLD20
reports the average Levenshtein distance between the syllabic
transcription of a word and its 20 closest neighbors. Phonological
Levenshtein distance (PLD) is the minimum number of additions,
deletions, and substitutions of syllables needed to transform the
pronunciation of one word into that of another. A word with high
PLD20 is one with an relatively unusual pronunciation (it would
take a lot of edits to change it into another word’s pronunciation),
whereas a word with low PLD20 has a relatively common pro-
nunciation.

Semantic content. Words also vary greatly in their semantic
content, which can be measured in several ways. As with orthog-
raphy and phonology, we tried to find measures that reflected both
the semantic content inherent to a word (whatever concepts or
meanings the word refers to) as well as measures that reflect a
word’s relative semantic distinctiveness within the lexicon. In
terms of a word’s inherent content, one measure is its concreteness
(“Concr”), the degree to which the word refers to an entity that can
be seen or interacted with, reflecting the kinds of experiences one
typically has with the word’s referent. We use the mean concrete-
ness ratings reported by Brysbaert, Warriner, and Kuperman
(2014), which takes a value between 1 (low concreteness) and 5
(high concreteness).

Another measure of a word’s inherent semantic content is its
“semantic diversity”: A word with high semantic diversity is one
that has many possible meanings or interpretations, whereas a
word with low semantic diversity is one that has only a few
possible senses in which it can be used. We quantify this using two
measures: First is “NSense,” the number of “senses” listed for the
word in WordNet (Miller, 1995), analogous to the number of
definitions in the dictionary. Second, we also use a more natural-
istic measure, “SemD” (Hoffman, Lambon Ralph, & Rogers,
2013), a corpus-based measure that reports the average dissimilar-
ity between documents in which a word appears. It thus represents
the diversity of the situations in which a word is used: words with
low semantic diversity appear only in specialized contexts while
those with high diversity appear in a wide variety of settings.

Finally, as a measure of a word’s semantic content relative to the
other words in the lexicon, we computed each word’s Semantic
Neighborhood Density (SND). We computed SND using a seman-
tic space derived from the HAL model (Hyperspace Analogue to
Language; Lund & Burgess, 1996), as described in Günther, Dud-
schig, and Kaup (2015). A word’s SND is defined as the average
of its top 10 similarity values between that word and all other

1 In some cases, this procedure resulted in a pseudoword that, although
not in most dictionaries, could be reasonably be considered a word in
common usage (like “SLICKED” or “DISSING”). As a result, our analyses
below focus on the case in which a word is presented in its proper word
form.
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words in the corpus (similarity between two words is measured by
the cosine of the angle between each word’s vector representation
in the semantic space; Buchanan, Westbury, & Burgess, 2001).
Words with high SND tend to have semantically similar neighbors,
suggesting that many other words have similar meanings, whereas
words with low SND tend to be the only word with their particular
meaning. SND is thus analogous to OLD20 and PLD20 in that it
measures the relative distinctiveness of a word’s semantic (as
opposed to orthographic or phonological) content.

Design and Procedure

The experiment included five different tasks: single item recog-
nition, associative recognition, cued recall, free recall, and lexical
decision. Each task was repeated three times over the course of the
experiment for a total of 15 blocks, with 20 test trials per block.
The first five blocks consisted of the first presentation of each of
the five tasks (randomly ordered for each participant). For the
remaining 10 blocks the five task types were presented twice in
random order. The task was postcued, therefore participants could
not adopt a study strategy based on the anticipated test type. The
items in each block were randomly sampled from the pool of 924
words without replacement for each participant, such that no items
repeated between blocks for a given participant.

All blocks (except lexical decision) began with a study phase
where participants viewed 20 word pairs presented side by side,
one pair at a time. Each pair remained on the screen for 2 seconds
and was immediately followed by asking participants to “Please
rate the degree of association between the two items you just saw”
on a scale from 1–9 where 1 is not at all associated and 9 is highly
associated. The word pair was not visible on the screen during the
rating. Responses were self-paced by clicking on boxes numbered
1–9 on the screen.

Each study phase was immediately followed by a distractor task.
This was a simple math task where participants continuously
added a series of 15 random digits drawn with replacement from
the range 1–9. Digits were presented at a rate of 3 seconds per
digit, for a total presentation time of 45 seconds. After all digits
appeared participants typed in their response and received accu-
racy feedback.

Following the distractor task, participants were presented with
one of the following memory tasks. Responses in all tasks were
self-paced. Each study/test block was followed by the option to
take a self-paced break. The experiment lasted approximately one
hour.

Single item recognition. For the target stimuli, 10 study items
were selected at random from the study list. The 10 items could be
from either the right or the left presentation position, but not from
both the left and the right presentation position for the same study
trial. In other words only one of the words in the study word pair
could be selected. These 10 old items were combined with 10 foils
and presented in random order in the center of the screen. Partic-
ipants are asked to “indicate if the item you see on the screen was
on the list you just studied (YES) or not on the list (NO).”
Participants responded by clicking on boxes presented on the
computer screen.

Associative recognition. For the test stimuli, 10 word pairs
were selected at random from the study list. The remaining 10
words pairs were scrambled such that none of the pairs remainedT
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intact. The scrambled pairs could be rearranged both between
earlier and later study positions as well as between right and left
presentation positions. The 10 intact word pairs were combined
with the 10 rearranged word pairs and presented in random order
in the center of the screen with one word appearing above the other
rather than side by side. Participants were asked to “indicate if the
PAIR of words you see on the screen was studied as a PAIR on the
list you just studied (YES) or were not a pair (NO).” Participants
responded by clicking on boxes presented on the computer screen.

Cued recall. For the test stimuli, 20 study items were selected
from the study list, one from each pair. Ten of the 20 items were
from the right study presentation position and 10 were from the left
study presentation position, randomly chosen. In this way all 20
study pairs are tested, but half the cue words were from the right
presentation position and half were from the left presentation
position. The 20 cue words were presented in random order to the
left of a box on the computer screen where participants were asked
to enter the corresponding word in the pair. Participants are asked
to respond by “typing the OTHER WORD in the pair. For example
if you studied BRICK BRACK and you now see BRICK your
response should be BRACK. If you cannot recall the word click
DON=T REMEMBER.” It was emphasized to participants that
spelling did not matter; rather they should focus on providing as
many responses as possible.

Free recall. No words were presented at test, rather partici-
pants were asked to “try to recall as many words from the study list
as you possibly can. When you cannot recall any more words click
on the FINISHED button.” Participants were required to attempt to
provide responses for a minimum of 90 seconds. A timer appeared
on the screen and the finished button could not be clicked until 90
seconds had passed. It was emphasized that spelling did not matter;
rather they should focus on providing as many responses as pos-
sible.

Lexical decision. This task was not preceded by a study
block. For the test stimuli, 10 words drawn from the complete
word set were combined with 10 pseudowords and presented in
random order in the center of the screen. Participants were simply
presented with a word and asked to “indicate if the item you see is
a word (YES) or not at word (NO). Respond as QUICKLY as
possible.” Participants responded “word” by clicking the left
mouse button and “non-word” by clicking the right mouse button.
Response time was measured from the onset of the word to the
click of the mouse button.

Free Response Normalization

Responses for cued and free-recall tasks were first corrected for
spelling and automatically coded for accuracy via an automated
direct word comparison. Any incorrect responses were then cor-
rected for plurals and conjugations and hand coded following a
lenient criterion such that if the word could be interpreted as being
the same as a target word it was coded as correct. For example, a
response of “fiexd” was accepted as the target “fixed” (switched
letters), “contricute” was accepted for “contribute” (wrong letter),
“aranged” was accepted for “arranged” (missing letter).

Analysis

Our interest is in how performance in each of these tasks is
correlated, both among items and among individuals. To study

this, we make use of a joint measurement model that characterizes
the outcomes of each trial in the experiment in terms of a set of
parameters related to the individual on that trial as well as a set
of parameters related to the item(s) on that trial.2 The values of
these parameters are merely quantitative measurements of the
contributions of items and individuals to performance in each task.
The correlations among these two sets of parameters thus reflect
how the contributions of items and individuals vary between and
within tasks. We wish to emphasize that our modeling is aimed at
extracting these quantities (hence the term “measurement model”),
not at providing a description of the psychological processes
involved in each task (which we would term a “psychological” or
“cognitive” model).

We estimate these quantities within a hierarchical Bayesian
model. Bayesian methods have two crucial advantages for our
purpose (Vandekerckhove, 2014): First, the resulting estimates
reflect the different sources and degrees of uncertainty between
items and individuals (and between different items and different
individuals). Second, the resulting estimates reflect the fact that
items and individuals jointly contribute to responses across trials,
such that information about the items informs the estimates of the
individuals and vice versa.

Task Models

Our tasks comprise two broad categories: binary-choice tasks
(lexical decision and single-item and associative recognition) and
recall tasks (cued and free recall). Because of the differences
between these types of tasks, different measurement models are
required for each. Below, we describe the structure and parameters
of these models and how they are related to observed task perfor-
mance with both items and individuals. We emphasize that the
models described below are used as measurement tools that act to
transform the data into parameters which are more readily inter-
preted.

Binary choice tasks. For binary choice tasks, performance on
each trial is characterized by a final response (“yes” or “no”) and
response time (RT). A common and robust framework for jointly
modeling choice and response time are random-walk/diffusion
models (e.g., Busemeyer & Townsend, 1993; Edwards, 1965;
Link, 1975; Link & Heath, 1975; Ratcliff, 1978; Stone, 1960).
Such models assume that participants continue to draw samples
from an evidence-generating process (in this case, the process is
memory retrieval) until they have accumulated enough to commit
to a decision. Such models are widely used throughout psychol-
ogy, including in our three binary choice tasks, lexical decision
(Ratcliff, Gomez, & McKoon, 2004), single-item recognition (Rat-
cliff, 1978; Starns, Ratcliff, & McKoon, 2012; Starns & Ratcliff,
2014), and associative recognition (Ratcliff, Thapar, & McKoon,
2011; Voskuilen & Ratcliff, 2016).3 Although other frameworks
exist to jointly characterize accuracy and response time, notably
accumulator models (Brown & Heathcote, 2008; Usher & McClel-
land, 2001; Vickers, 1970), in practice when used as measurement

2 This model structure is identical to that used in item response theory.
3 It is likely that, in associative recognition, multiple accumulation

processes are actually involved in making a decision (Cox & Criss, 2017;
Cox & Shiffrin, 2017), although a single accumulation process has been
found to provide a satisfactory account of the data produced in this task.
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models, these frameworks lead to identical conclusions regarding
cognitive constructs of interest, particularly with regard to the
strength of the evidence used to make a decision, which is our
primary interest in this analysis (Donkin, Brown, Heathcote, &
Wagenmakers, 2011; Rae, Heathcote, Donkin, Averell, & Brown,
2014).4

A diffusion model for binary choice, as depicted in Figure 1,
assumes that each sample of evidence comes from a Gaussian
distribution with mean d and unit variance (the variance amounts
to a scale factor that can be fixed for present purposes). Over time,
the summed evidence will “drift” with direction and magnitude
proportional to d. To the extent that d � 0, evidence drifts upward
and favors a “yes” response; conversely, to the extent that d � 0
evidence will drift downward and favor a “no” response. Partici-
pants set upper and lower response boundaries reflecting the
amount of accumulated evidence needed to commit to a “yes” or
“no” response, respectively. These boundaries can be character-
ized by their degree of separation As and bias bs, such that the
upper boundary is (1– bs) � As and the lower boundary is –bs �
As. As boundary separation As increases, more evidence is required
to commit to either decision, resulting in longer response times but
greater accuracy, due to the additional evidence accumulated.
When bs � 1

2, the boundaries are symmetrical meaning that “yes”
and “no” responses require an equal amount of accumulated evi-
dence. If bs � 1

2, the upper boundary is closer to the start than the
lower boundary, meaning less evidence is needed to commit to a
“yes” versus a “no” response and we say that there is a “response
bias” toward “yes” (and conversely if bs � 1

2). The response for a
particular trial is given by which of the two boundaries is hit first
and the RT is the time taken to hit that boundary, plus a residual
time Rs reflecting time needed to detect and begin processing the
test item(s) and execute the motor response. The likelihood of
making either a “yes” or a “no” response at time t can then be
expressed (Feller, 1968; Navarro & Fuss, 2009; Ratcliff, 1978):

Pr(“yes ” , t |As, bs, Rs, d) � �
As

2 exp�dAs(1 � bs) �
d2(t � Rs)

2
�

� �
k�1

�

k exp��
k2�2(t � Rs)

2As
2 � sin(k�(1 � bs))

Pr(“no ” , t |As, bs, Rs, d) � �
As

2 exp��dAsbs �
d2(t � Rs)

2
�

� �
k�1

�

k exp��
k2�2(t � Rs)

2As
2 � sin(k�bs)

Although these expressions seem formidable, they can be com-
puted to high precision with relative ease using modern numerical
methods (Navarro & Fuss, 2009; Tuerlincx, 2004; Wabersich &
Vandekerckhove, 2014).

We decompose the evidence accumulation rate d into a sum
of two components: �, which reflects the tendency for evidence
to drift upward regardless of the kind of test trial; and �, the
difference in the rate of evidence accumulation between target
trials (those for which a positive response is correct) and foil
trials (those for which a negative response is correct), such that
� is conceptually similar to the d= measure from signal detec-
tion. Thus, for each participant s, five parameters describe their
decision process for each binary choice task: Boundary sepa-
ration As, boundary bias bs, residual time Rs, average evidence
drift �s, and evidence accuracy �s. Each item i is associated
with two parameters for each binary choice task: an average
evidence drift �i and accuracy �i. As we now describe in detail
for each task, the participant and the item(s) jointly influence
the mean rate of evidence accumulation d for each trial, while
response boundaries and residual time are properties of the
participants only.

Single-item recognition. We begin by describing the task
model for single-item recognition (SR), which will also help to
explicate how choice and RT are jointly modeled across all binary
choice tasks. On any one trial, participant s is presented with probe
item i. Probe item i can either be a word that was studied
(a “target”) or one that was not (a “foil”). We use the indicator
variable �SR to represent this: �SR � 1

2 if the probe is a target and
�SR � � 1

2 if it is a foil (the choice of 1
2 as the magnitude of the

indicator is arbitrary, but keeps the drift and accuracy parameters
on the same scale).

As mentioned above, participant s is associated with a level of
boundary separation As

SR, boundary bias bs
SR, and residual time Rs

SR

for the SR task, and these are not affected by the item presented on
the current trial. The mean rate of evidence accumulation d is a
function of both the participant s and the test item i:

d � 	i
SR 
 	s

SR
È

drift


 �SR��i
SR 
 �s

SR�
Ç

accuracy

,

where �i
SR is the drift associated with item i, reflecting the recog-

4 For analysis purposes, we use only a simple Wiener diffusion model
rather than the more elaborate diffusion model popularized by Ratcliff and
colleagues. Our model, therefore, does not include trial-by-trial variability
in either starting point or residual time, although it does incorporate
trial-by-trial variability in drift rates by virtue of including item effects
(which, by definition, vary between trials). Including such additional
variability may be more psychologically plausible, but is not necessary
when using the model as a measurement tool.

0.0 0.5 1.0 1.5 2.0

Accumulation time (s)

A
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at
ed

 e
vi
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nc

e

0

Average evidence
accumulation rate d

Boundary
separation As

Response
bias bs

Figure 1. Depiction of a diffusion model of evidence accumulation,
illustrating the roles of the boundary separation parameter As, response bias
parameter bs, and average rate of evidence accumulation d. Gray dotted
lines indicate potential evidence trajectories that eventually lead to one of
the two response boundaries (dashed lines), at which time participants
commit to a “yes” (upper boundary) or “no” (lower boundary) decision.
Total response time is the sum of the time spent accumulating evidence
until a boundary is hit plus a residual time Rs for initiating the accumulation
process and executing the response.
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nition evidence provided by item i regardless of its study status;
�s

SR is the drift associated with participant s, reflecting the tendency
for participant s to accumulate positive or negative evidence re-
gardless of the test item (note that this is separate from boundary
bias bs

SR); �i
SR is the degree to which item i yields different recog-

nition evidence when it is a target versus a foil; and �s
SR is the

overall ability of participant s to distinguish between targets and
foils in SR.

Lexical decision. The task model for lexical decision (LD) is
a close analog to that for SR. The critical difference is that,
whereas �SR indicated whether the probe had been studied or not,
the corresponding indicator variable for LD, �LD, indicates whether
the probe is presented in its usual word form (�LD � 1

2) or is instead
presented in its distorted pseudoword form (�LD � � 1

2). The drift
parameters now reflect, for an item, the degree to which it tends to
seem like a word (�i

LD), and for a participant, the degree to which
they accumulate positive lexical evidence regardless of the probe
item (�s

LD). The accuracy parameters describe, for an item, how
easily its word and pseudoword forms can be told apart (�i

LD), and,
for a participant, how well they can generally discriminate between
words and pseudowords (�s

LD). The resulting average rate of evi-
dence accumulation on a particular trial is, again, a joint function
of the item on that trial (i) and the participant engaging in that
trial (s):

d � 	i
LD 
 	s

LD
È

drift


 �LD��i
LD 
 �s

LD�
Ç

accuracy

.

Finally, recall that each participant is associated with a boundary
separation (As

LD), boundary bias (bs
LD), and residual time (Rs

LD) for
the LD task.

Associative recognition. In associative recognition (AR), there
are two probe items (i and j) instead of just one. In addition, the
indicator �AR now refers to whether the pair is intact (�AR � 1

2) or
rearranged (�AR � � 1

2). In our model, each item contributes inde-
pendently to drift—the degree to which they appear to be an intact
pair—and to accuracy—the ability to tell whether the pair
(i, j) is intact or rearranged. As in LD and SR, then, we can express
the rate of evidence accumulation on a trial as a function of the items
presented (i and j) and the participant (s):

d � 	i
AR 
 	j

AR 
 	s
AR

È
drift


 �AR��i
AR 
 �j

AR 
 �s
AR�

Ç
accuracy

.

And, again, each participant has a boundary separation (As
AR),

boundary bias (bs
AR), and residual time (Rs

AR) for the AR task.
Recall tasks. The outcome on any one trial of a recall task can

be classified as one of the following: a correct recall, an erroneous
recall (an intrusion), or a failure to make any response. Unlike in
binary choice tasks, we do not attempt to model response time in
recall. This is chiefly because it is unclear how RT should be
measured in recall, given that participants were allowed unlimited
time to retype their responses before committing to a final re-
sponse (in the few studies that have focused on RT in recall tasks,
a different procedure is often used in which participants first
produce a clear signal that they are ready to respond, followed by
a more protracted period in which they produce the response; see,
e.g., Nobel & Shiffrin, 2001).

Our measurement model for recall tasks breaks down each recall
observation into two components: a “bias,” �, to make a response
rather than give up; and the accuracy, 	 of a response conditional
on having made one (i.e., a correct recall vs. an intrusion). These
components, which are influenced by both items and participants,
enter into a multinomial logistic link function5 to yield a likelihood
for each possible outcome:

Pr(Correct recall) � exp(� 
 
)
exp(� 
 
) 
 exp(� � 
) 
 exp(��)

Pr(Intrusion) � exp(� � 
)
exp(� 
 
) 
 exp(� � 
) 
 exp(��)

Pr(No response) � exp(��)
exp(� 
 
) 
 exp(� � 
) 
 exp(��) .

We now describe how � and 	 are computed for each trial of
each recall task.

Cued recall. A single trial of cued recall (CR) involves a cue
item (i) and a target item (j). Because each of these items plays a
distinct role in cued recall, we estimate separate parameters for
each. CR bias � and accuracy 	 are thus functions of the cue and
target items (cue i and tar[get] j) and the participant s:

� � 	i
CR Cue 
 	j

CR Tar 
 	s
CR


 � �i
CR Cue 
 �j

CR Tar 
 �s
CR,

where �s
CR reflects the overall tendency for participant s to produce

responses in CR; each item � reflects the degree to which that item
tends to elicit a response in CR; each item � reflects the degree to
which items in each role yield accurate CR responses, rather than
intrusions; and �s

CR is the tendency for participant s to produce
correct CR responses rather than intrusions.

Free recall. The task model for free recall (FR) is essentially
a simpler version of that for cued recall, with bias � and accuracy
	 being functions of the participant s and the (potential) response
item i:

� � 	i
FR 
 	s

FR


 � �i
FR 
 �s

FR.

Note that, just as we allow different accuracy parameters � between
cued and free recall, we also allow for different � parameters to reflect
overall response tendencies in cued and free recall. Unlike in all the
other tasks, FR has no explicit trial structure: participants proceed at
their own pace and stop at their leisure. Therefore, we create a set of
“ghost” trials in FR: For each list, there are 40 studied items. Each
response a participant makes, whether correct or an intrusion, is
considered a “trial,” with the item i being the word they produced on
that trial. For each list item a participant fails to recall, we create a
“trial” in which we imagine that the participant attempted to recall that
item but failed. This way, even though we directly observe only actual
FR responses, our model can still make use of the information about
the items that were studied but notrecalled. Finally, if the participant
gives a response that is not among the 924 items in the stimulus pool,
we set �i � �i � 0 on that trial.

5 Otherwise known as a softmax or Luce choice rule.
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Bayesian Estimation

The task models described above assign a likelihood to the ob-
served outcome (choice and RT for binary choice tasks and response
in recall tasks) of each trial for each task. These likelihoods depend on
the 19 parameters for each participant, summarized in Table 2, and the
12 parameters for each item, summarized in Table 3. We estimate all
of these parameters simultaneously using Bayesian techniques (for an
overview, see Kruschke, 2015) implemented in Stan (Carpenter et al.,
2017). The model structure is depicted in Figure 2, where we used
intentionally broad priors given that the large amount of data would
outweigh even moderately informed prior distributions. For estima-
tion purposes, constrained parameters (boundary separation, response
bias, and residual time parameters) were first estimated on the real line
and then transformed to their constrained scales before using them in
the likelihood computations. For boundary separation parameters, an
exponential transformation was used to go from the real line to strictly
positive values; for response bias parameters, a logistic transformation
(1/[1
exp(�x)]) was used to go from the real line to values between
0 and 1; for residual times, which are constrained to be between 0 and
the minimum RT for a participant in each task, a scaled logistic
transformation was used (min RTt,s/[1
exp(�x)], where min RTt,s is
the minimum observed RT for participant s in task t).

We obtained 10,000 samples from the joint posterior distribution
by using Stan (Carpenter et al., 2017) to run 10 parallel Monte Carlo
Markov chains for 1000 iterations each, following 1000 adaptation
steps each. The R̂ statistic (Gelman & Rubin, 1992) measures the

degree to which these chains have converged to a stationary repre-
sentation of the posterior distribution; the closer R̂ is to 1, the stronger
the degree of convergence. Across all 453 � 19 participant parame-
ters, the median R̂ is 1.000 and the 97.5% quantile is 1.005; across all
924 � 12 item parameters, the median R̂ is 1.000 and the 97.5%
quantile is 1.001. There is thus strong evidence for convergence. As
a measure of how accurately each of these parameters is estimated, we
can compute a signal-to-noise ratio, namely, the absolute value of the
posterior mean divided by the Monte Carlo standard error (Kass,
Carlin, Gelman, & Neal, 1998); greater values indicate greater accu-
racy, and generally values above 3 indicate a strong signal. Across all
453 � 19 participant parameters, the median signal-to-noise ratio is
160 and the 2.5% quantile is 6.0; across all 924 � 12 item parameters,
the median signal-to-noise ratio is 93 and the 2.5% quantile is 4.6.
There is, then, strong evidence that the joint posterior distribution
across all item and participant parameters is accurately represented.

Inferring Correlational Structure

Each sample from the posterior distribution yields 12 sampled
parameters for each item and 19 sampled parameters for each
individual. We then compute the Pearson correlation matrices for
each of these two sets of parameters for each sample.6 The result-
ing posterior distribution over correlation matrices for item param-
eters and individual parameters contains all the information needed
to determine how parameters are related among items and indi-
viduals, respectively. Unfortunately, it is difficult to directly interpret
even a single 12 � 12 or 19 � 19 correlation matrix if there are
complex relationships among the entities involved, let alone 10,000
such matrices. We therefore augment analysis of the correlation
matrices by obtaining the principal components—that is, the eigen-
values and eigenvectors—of each sample of each correlation matrix
and examine the resulting distribution of parameter loadings on each
component. The principal components represent the latent dimensions
along which items and individuals may vary (for an overview of
principal components analysis, see Jolliffe, 2002). This representation
does not lose any information—it is merely a decomposition of the
original correlation matrix.7 To the extent that the correlation matrix
contains meaningful structure, these transformed dimensions—the
principal components—convey information about the extent to which
different groups of parameters covary along the same dimensions.
Moreover, because these dimensions are, by definition, orthogonal to
one another, we gain insight about how different groups of parameters
can vary independently of one another, thus reflecting different
sources of variability.

Results

Prior to analysis, we excluded trials in the binary choice tasks
(lexical decision, single-item recognition, and associative rec-
ognition) in which responding was either exceptionally short or
exceptionally long, because these were unlikely to reflect the

6 The posterior distribution over the hyper-parameters of the item and
individual parameters could also be used for this purpose and, in practice,
gives essentially identical results, but is somewhat less stable since it is not
as closely tied to the data.

7 Although an additive factor analysis model could also be used, doing
so would require choosing the number of dimensions/factors ahead of time,
whereas PCA allows this decision to be driven purely by the data.

Table 2
Summary of Parameters Describing Individual Participants

Parameter Description

As
LD Boundary separation in lexical decision.

Rs
LD Lexical decision residual time.

bs
LD Response bias in lexical decision.

�s
LD Participant’s average evidence drift rate in lexical decision.

�s
LD Participant’s ability to distinguish between words and non-

words.
As

SR Boundary separation in single-item recognition.
Rs

SR Single-item recognition residual time.
bs

SR Response bias in single-item recognition.
�s

SR Participant’s average evidence drift rate in single-item
recognition.

�s
SR Participant’s ability to distinguish between studied and

unstudied items.
As

AR Boundary separation in associative recognition.
Rs

AR Associative recognition residual time.
bs

AR Response bias in associative recognition.
�s

AR Participant’s average evidence drift rate in associative
recognition.

�s
AR Participant’s ability to distinguish between intact and

rearranged pairs.
�s

CR Average tendency for a participant to give a response in
cued recall.

�s
CR Rate at which a participant gives correct rather than

incorrect responses in cued recall.
�s

FR Average tendency for a participant to give a response in
free recall.

�s
FR Rate at which a participant gives correct rather than

incorrect responses in free recall.
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processes of interest. Specifically, responses shorter than 200
ms were excluded because they could not have been produced
by processing the stimuli on a given trial (this resulted in
exclusion of 445 trials in lexical decision, 107 trials in single-
item recognition, and 108 trials in associative recognition).

Responses greater than 10 seconds were also excluded because
they are likely to be contaminated by processes other than those
involved in the task (this resulted in exclusion of 34 trials in
lexical decision, 26 trials in single-item recognition, and 60
trials in associative recognition). The following analyses are
thus based on a total of 164,001 trials (26,093 in lexical
decision, 26,253 in single-item recognition, 26,171 in associa-
tive recognition, 26,495 in cued recall, and 9884 in free recall)
produced by 453 participants.

As a very coarse summary of the data, we present average
response probabilities in each task in Figure 3 and average
median correct RT for binary-choice tasks in Figure 4. We note
for the moment the apparently high intrusion rate in FR. As
shown in Figure 5, although overall rate of responding in FR
diminishes over the experiment, the relative proportions of
different types of intrusions and correct responses stays rela-
tively consistent after the first block. Comparing the responses
in FR when it is the first block versus any subsequent block, it
is clear that although the relative proportion of extralist intru-
sions remains constant across blocks, intrusions of words from
prior lists effectively “consume” responses that, in the first
block, would have been correct; it thus appears that many
intrusions in FR can be attributed to confusions between the
current and previous lists. Moreover, such prior-list intrusions
come more often from recent lists rather than more temporally
distant lists (Zaromb et al., 2006). Intrusions in FR can be
contrasted with CR, where although overall responding once
again tends to decrease over the course of the experiment,
prior-list and even within-list intrusions are comparatively rare
(see Figure 6). These differing intrusion patterns will turn out to
be important in the Discussion. We now turn to the modeling
results for greater insight into the structure of the data.

Posterior Predictive

To ensure that our model provides an accurate description of
the data across tasks, we simulated a complete set of responses
for each sample from the posterior and used these to produce a
distribution of predicted performance across individual partic-

Table 3
Summary of Parameters Describing Items

Parameter Description

�i
LD Item’s average evidence drift rate in lexical decision.

�i
LD Difference in lexical evidence provided by an item when it is a word versus when it is distorted into a pseudoword.

�i
LD 
 �i

LD/2 Evidence drift rate when an item is presented in its normal non-distorted form in lexical decision (note that this is not a free
parameter, but a function of the previous two parameters).

�i
SR Item’s average evidence drift rate in single-item recognition.

�i
SR Difference in memory evidence provided by an item when it was studied versus when it was not.

�i
AR Item’s contribution to the average evidence drift rate in associative recognition.

�i
AR Difference in memory evidence provided by an item when it is part of an intact pair versus part of a rearranged pair.

�i
CR Cue Tendency for an item to elicit a response in cued recall when it is given as a cue.

�j
CR Tar Tendency for an item to elicit a response in cued recall when it is the target.

�i
CR Cue Tendency for an item to elicit a correct versus an incorrect response in cued recall when it is given as a cue.

�j
CR Tar Tendency for an item to elicit a correct versus an incorrect response in cued recall when it is the target.

�i
FR Overall tendency for an item to be produced as a response in free recall.

�i
FR Overall tendency for an item to be produced correctly versus incorrectly in free recall.

Observed 
outcomes

Task 
models

Item 
parameters

Baseline 
parameters

Subject 
parameters

~ (0, 10) ~ (0, ΣI) ~ (0, ΣS)

Scales σI
Correlation 
matrix ΩI

~ Half-Cauchy(0, 5) ~ LKJ(2)

Scales σS
Correlation 
matrix ΩS

~ Half-Cauchy(0, 5) ~ LKJ(2)

Figure 2. Schematic depiction of the model structure used to estimate
parameters for items and subjects across tasks. Individual participant
parameters were each constrained to have a mean (across participants) of
zero, as were each item parameter, such that the overall means are sepa-
rately estimated as the “baseline” parameters. The half-Cauchy prior dis-
tribution over scales is parameterized in terms of center and scale param-
eters (here set to a weakly informative 0 and 5, respectively) and is
restricted to be strictly positive. The “LKJ” prior distribution over corre-
lation matrices is defined by Lewandowski, Kurowicka, and Joe (2009).
Covariance matrices � are obtained from the vector of scales 
 and
correlation matrix � via � where � � Diag(
)�Diag(
) where Diag(
)
indicates a diagonal matrix with the vector of scales along its main
diagonal. Task models are described in the main text and are used to
compute the likelihood of the observed outcome on each trial, conditioned
on the baseline, item, and individual participant parameters.
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ipants (see Figure 7) and, separately, over individual items (see
Figure 8). The first thing to note is that the predictions are
centered at the observed values (i.e., about the diagonal of each
plot), justifying the model as providing a legitimate description
of the data. The second thing to note is the spread of the
predictive distribution around each diagonal, which reflects the
level of uncertainty inherent in the data. This spread is gener-
ally smaller for individuals than items, suggesting that individ-
uals, marginalized over items, yield more consistent perfor-
mance than items, marginalized over individuals.

Comparison of Binary-Choice Task Parameters

There are clear differences among the three binary choice tasks
(LD, SR, and AR) in terms of both accuracy and RT. By exam-
ining the posterior distribution of mean parameters, we can figure
out how to attribute these differences to the cognitive processes
these parameters represent. As shown in Figure 9, participants are,
indeed, more accurate in LD than in SR and AR in the sense that,
on average, they accumulate stronger evidence discriminating be-
tween words and nonwords than they do discriminating studied
from unstudied items or pairs. Both evidence drift and response
bias are higher in LD as well, consistent with the high rate at which
words are endorsed as well as the high false alarm rate to non-
words. Finally, the increased RT in AR relative to the other tasks
can be attributed both to an increase in the amount of evidence
needed to commit to a decision (boundary separation) as well as an
increase in residual time. A simple reason why residual time may
be higher in AR relative to SR is that participants must process two

words in AR rather than just one, although response-signal studies
suggest that the cost of reading two versus one word is relatively
minor compared with the cost of requiring associative information
rather than only item information (Gronlund & Ratcliff, 1989).
Other than the difference in the number of stimuli in AR, response
demands (pressing a mouse button) are equivalent across the
binary-choice tasks, suggesting that many of the differences in
residual time can be attributed to additional processes engaged
while accessing the relevant evidence in memory (see Cox &
Shiffrin, 2017, for additional discussion on differences in residual
times and additional processing in AR relative to SR).

Correlations at the Individual Level

The posterior distribution over the matrix of correlations be-
tween all individual participant parameters is shown in Figure 10.
A visual inspection reveals mostly positive correlations. Accuracy-
related parameters (�s) in all tasks are positively correlated, with
accuracies in single-item and associative recognition representing
the strongest pairwise correlation, with overall recall levels (�s

CR

and �s
FR) also being correlated between tasks and with accuracy in

all episodic tasks. Accuracy parameters in the four episodic tasks
are negatively correlated with overall evidence drift in single-item
recognition (�s

SR), indicating that a tendency to accrue positive
evidence in SR (irrespective of the test item) is negatively asso-
ciated with episodic accuracy overall. There are also positive
correlations among the boundary separation (As), response bias
(bs), and residual time (Rs) parameters across binary-choice tasks,
suggesting that these represent relatively stable characteristics of
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Figure 3. Mean response probability in each task. For binary choice tasks (lexical decision, single recognition,
and associative recognition), response probability is the probability of giving a positive response (“YES”) to the
given test. “Targets” and “foils” are defined as words and pseudowords in lexical decision, studied and unstudied
words in single recognition, and intact and rearranged pairs in associative recognition, respectively. For cued
recall, response probability is the probability of producing a response that is either the target item (correct recall)
or a nontarget/foil item (intrusion). For free recall, response probability is the proportion out of 40 possible
responses that are correct studied (target) items or nontarget/foil items (intrusions). Error bars denote within-
subjects standard errors around the mean.
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individuals. In general, residual time and boundary separation are
positively correlated with accuracy, perhaps indicating that partic-
ipants who are more deliberate and/or focus more time on task tend
to be more accurate. However, this is only true for SR and AR; in
LD, accuracy and boundary separation are negatively correlated,
reflecting a kind of reverse-speed–accuracy trade-off (participants
who find the task especially easy do not bother spending as much
time accumulating evidence). Finally, we note the negative corre-
lation between overall level of free recall (�s

FR) and free recall

accuracy (�s
FR), meaning that participants who recall many words

also tend to produce many intrusions whereas those who recall
fewer words do so more selectively.

Our subsequent analyses focus on the individual parameters that
directly relate to the memory evidence used by participants in each
task, namely, the � and � parameters reflecting, respectively,
response tendencies and response accuracy in each task (see Ap-
pendix B for additional analyses of the complete set of participant
parameters). In binary choice tasks, � and � parameters are related
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Figure 4. Observed mean correct response time in binary choice tasks. “Targets” and “foils” are defined as
words and pseudowords in lexical decision; studied and unstudied words in single recognition; and intact and
rearranged pairs in associative recognition, respectively. Error bars denote within-subjects standard errors around
the mean. (a) Total number of responses. (b) Relative proportion of responses.
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Figure 5. Pattern of responses in free recall as a function of block within the experiment. “Extra” indicates an
extralist intrusion. (a) Total number of responses. (b) Relative proportion of responses. See the online article for
the color version of this figure.
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to the rate at which participants accumulate memory evidence and
can be contrasted with boundary separation, boundary bias, and
residual time, which act to transform the underlying memory
evidence into an observed response at a particular time.

The many pairwise correlations between individual evidence
parameters, shown in Figure 11 extracted from the full matrix of
correlation distributions, could well manifest from a smaller set of
underlying factors which can be revealed by examining the prin-
cipal components of each sample of the correlation matrix. As
described above, we obtained the eigenvalues and eigenvectors of
each sample of the correlation matrix among evidence-related
individual parameters. Because eigenvectors are only defined up to
a change in sign, we adjusted the sign of each sample of each
eigenvector to maximize its dot product with a common basis
vector, thereby identifying the resulting components. As shown in
Figure 12, there are four eigenvalues that are credibly greater than
or equal to one, indicating that the pattern of correlations among
individual parameters can be satisfactorily accounted for by four
principal components which collectively account for a median of
70% (with a 95% credible interval of 69%–72%) of the total
correlation among individuals (Larsen & Warne, 2010). To aid
interpretation, we performed an orthogonal rotation on each sam-
ple of the loading matrix of these top four principal components
according to the infomax criterion, which tends to emphasize
simplicity of the resulting pattern of loadings (that is, each param-
eter will tend to load on only one dimension) while discouraging
them from collapsing onto a single component (Browne, 2001;
McKeon, 1968). Details about this rotation procedure are given in
Appendix A, but we note here that a single rotation was applied
across all samples, such that rotation yielded a linear transforma-
tion, rather than a distortion, of the principal components. We refer
to the resulting rotated components as “factors” (although they are
not strictly identical to the results of an additive factor analysis);
these factors are a set of basis vectors that represent the most
important latent dimensions of the data.

The posterior distributions over the loadings of each parameter
on these four factors are shown in Figure 13. Because each factor

is orthogonal to the others, it is possible for a participant to vary
along one factor without altering the level of any of the others. We
now describe how each factor can be interpreted in a way that
makes it easier to understand the pattern of correlations among
participant parameters. Although the factors themselves are a
product of the data, the labels we apply to them involve a degree
of subjectivity, and others may prefer different labels.

Individual evidence factor 1: Episodic accuracy. This first
factor corresponds to accuracy across all episodic memory tasks
(SR, AR, CR, and FR), which is slightly negatively correlated with
drift in SR (�s

SR). That lexical accuracy does not load on this factor
suggests that it does not reflect general ability, but is specific to
tasks that involve episodic memory. Thus, a participant who scores
highly on this factor is good at discriminating between studied and
unstudied items and between intact and rearranged pairs and, when
they produce a response in a recall task, the response tends to be
correct rather than an intrusion.

Individual evidence factor 2: Recall propensity. This factor
chiefly accounts for the tendency to produce responses in either cued
or free recall (�s

CR and �s
FR, respectively), separately from the accuracy

of those responses. Accuracy in both single-item and associative
recognition also load slightly on this factor, such that high recognition
accuracy is associated not only with correct responding in cued and
free recall (factor 1, above) but to a lesser extent with overall response
rate as well. It is critical to note that, although a participant who scores
highly on this factor may produce many responses in cued and free
recall, those responses are not guaranteed to be correct, because CR
and FR accuracy do not load on this factor.

Individual evidence factor 3: Lexical evidence. This factor
reflects the positive correlation between overall drift and accuracy
in lexical decision. That these are positively correlated (i.e., load in
the same direction) implies that participants who score highly on
this factor are particularly good at detecting words (for which the
evidence accumulation rate is proportional to the sum of drift and
accuracy), rather than at rejecting pseudowords.

Individual evidence factor 4: Recognition bias. The ten-
dency to accumulate positive evidence in single-item recognition
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Figure 6. Pattern of responses in cued recall as a function of block within the experiment. “Extra” indicates
an extralist intrusion while “within” indicates a within-list intrusion. See the online article for the color version
of this figure.
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Figure 7. Posterior predictive distributions for performance of individual participants. Each point represents a
sample of single participant. See the online article for the color version of this figure.
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Figure 8. Posterior predictive distributions for performance at the item level. Each point represents a sample
of single item. See the online article for the color version of this figure.
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is associated with a tendency to accumulate positive evidence in
associative recognition, but not with the same tendency in lexical
decision. As with factor 1 (above), the distinction between episodic
and lexical tasks implies that this factor is related to a tendency to
accumulate positive evidence for episodic decisions only, rather than
being a general characteristic of binary choice tasks.

Correlations at the Item Level

Before we analyze the correlations among item parameters, we
remind the reader that the pseudoword foils in our LD task were
each generated by distorting one of the 924 stimulus words. As
such, we parameterized the items in LD in terms of an average
evidence drift �i

LD associated with each word, regardless of
whether it was distorted or not, and an evidence accuracy �i

LD

reflecting the difference in evidence accumulation between the
distorted and nondistorted forms of the word. Because the other
tasks only used the original nondistorted words, however, our
analysis below will only consider the LD evidence accumulation
rate of the nondistorted word, which is given by �i

LD
�i
LD/2. The

analysis including the pseudoword drift rates is presented in Ap-
pendix C and differs from the following only in that it is harder to
interpret correlations between LD drift rates and a word’s norma-
tive characteristics. This difficulty arises because many of these
characteristics are subtly altered when a word is distorted into a
pseudoword (e.g., its orthographic regularity may differ) or they
are not applicable to pseudowords (e.g., pseudowords are not
clearly associated with any particular semantic content). By focus-
ing on only undistorted words, the following analysis avoids this
complication.

The posterior distributions over the pairwise correlations be-
tween item parameters are shown in Figure 14. Once again, visual
inspection hints at the structure inherent in these correlations:
There are many strong positive correlations, including between
accuracy parameters (�s) in all episodic memory tasks, as well as
overall recall rates (�i

FR, �i
CR Cue, and �i

CR Tar) and bias in AR (�i
AR).

As with individuals, there is a negative correlation between re-
sponse bias in SR (�i

SR) and episodic accuracy, and correlations
between lexical and episodic task parameters are minimal. As with

the parameter correlations for individuals, we now employ princi-
pal components analysis to better understand the structure of the
correlations between item parameters.

As shown in Figure 15, the first four principal components are
associated with eigenvalues that are credibly greater than or equal
to one, so we focus on these for our analysis (these four compo-
nents account for a median of 83% of variability, with a 95%
credible interval of 81%–86%). As above, we rotated the top four
principal components according to the “infomax” criterion to
obtain interpretable factors that describe the underlying dimen-
sions along which items can independently vary. The posterior
distributions of loadings on each factor are shown in Figure 16 and
are readily interpreted. To aid intuition, we provide examples of
words that have the lowest and greatest median scores on each of
these factors in Table 4.

In addition, for each sample of item factor scores, we computed
Kendall’s � rank correlations8 with the normative properties of the
items given in Table 1, yielding posterior distributions over rank
correlations between factor scores and normative characteristics,
shown in Figure 17. Although each of these characteristics are
themselves correlated with one another (see Table 5), they can help
interpret the nature of the item information that underlies these
different factors. Once again, we emphasize that although the
factors themselves arise from correlations in the data, it is possible
to assign different labels to these factors than those we have
provided.

Item factor 1: Supports episodic memory. This factor ac-
counts for accuracy across all episodic tasks, as well as drift in
associative recognition (�i

AR), the propensity for either a cue or
target to elicit a response in cued recall (�i

CR Cue and �i
CR Tar), and

the tendency for an item to be produced in free recall (�i
FR). The

fact that this factor accounts for both drift and accuracy in AR
suggests that it reflects an item’s ability to enhance recognition of
intact pairs rather than to reject rearranged pairs. Coupled with the

8 By taking the rank correlation, we acknowledge the different distribu-
tional characteristics of each property as well as the fact that their rela-
tionships with memory performance may be nonlinear.
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fact that this factor is also related to accuracy and overall respond-
ing in cued recall, this suggests that items that yield good recog-
nition performance (�i

SR) also yield the encoding of stronger asso-
ciations (which manifests in increased recognition of intact pairs
and correct responding in cued recall). Word frequency and ortho-
graphic/phonological complexity are somewhat negatively corre-
lated with this factor, however the strongest correlations are with
a word’s semantic qualities, namely, concreteness and semantic
diversity. A word tends to score highly on this factor if it refers to
a specific concrete entity (high concreteness) and/or occurs only in
specific discourse contexts (low semantic diversity). Concreteness
and semantic diversity are themselves negatively correlated, how-
ever; words that refer to specific entities tend to be used in specific
settings (and therefore also have fewer senses).

Item factor 2: Often recalled given a cue. This factor ac-
counts for the tendency of an item to elicit a response when it is the

target in cued recall, while other item parameters either have weak
or uncertain (broadly distributed) loadings on this factor. Coupled
with the fact that this factor does not demonstrate any strong
correlations with normative lexical properties, it is likely that this
factor reflects idiosyncratic properties of a word that allow it to
seem “target-like” in cued recall.

Item factor 3: Word-like. This factor accounts primarily for
the degree to which a word yields positive lexical evidence (given by
�i

LD 
 �i
LD/2, as described above). As would seem logical, this

property is negatively associated with measures of word length (num-
ber of letters/syllables) and complexity (OLD20 and PLD20), such
that shorter and/or less complex words are more readily identified as
such. This factor is only weakly, albeit positively, correlated with
normative word frequency (at least using the HAL measure), suggest-
ing that, at least over the range of frequencies represented in our
stimulus pool, overall prior occurrence of a word plays less of a role
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Figure 10. Posterior distributions over correlations between individual participant parameters. Parameter
names are given along the diagonal (see Table 2). The lower diagonal depicts the marginal posterior density of
each pairwise correlation while the upper diagonal gives the posterior mode of each pairwise correlation. For
visualization purposes, colors range between red (negative correlations) and blue (positive correlations) depend-
ing on the magnitude of the median correlation and the degree to which the densities in the lower right diagonal
are filled reflects the width of the widest highest density interval that excludes zero (smaller for distributions that
assign zero a high probability). See the online article for the color version of this figure.
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in LD than its orthographic/phonological properties. Correlations with
semantic measures are also weak, again emphasizing the importance
of low-level features for word identification.

Item factor 4: Biased to recognize. Finally, this factor ac-
counts for the tendency of a word to elicit a positive recognition

response, irrespective of whether it had been studied or not (�i
SR). As

with factor 2, reflecting a bias to produce responses in CR, a word’s
score on this factor is not strongly correlated with any of its normative
properties, implying that this factor pertains more to idiosyncratic
properties of words and how participants engaged with them, rather
than anything that systematically holds across the lexicon.

Comparison of Individual and Item Factors

In many ways, the patterns of correlations we found between
item and individual parameters break down along similar lines, at
least for the parameters that are directly comparable—namely, the
evidence-related � and � parameters. When focusing on only these
evidence-related parameters, four factors were found to describe
their correlational structure for both items and individuals. In
broad terms, these factors related to (a) episodic memory tasks, (b)
recall rate, (c) lexical decision, and (d) recognition bias. As de-
scribed in Appendix D, this general breakdown of task parameters
into factors remains consistent for both individuals and items, even
as the number of principal components used to construct these
factors differs, indicating that these are dimensions that most
clearly define the structure of the correlations within and between
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Figure 11. Posterior distributions over correlations between individual participant parameters related to
memory evidence (for the full matrix of correlation distributions, see Figure 10). Parameter names are given
along the diagonal (see Table 2). The lower diagonal depicts the marginal posterior density of each pairwise
correlation whereas the upper diagonal gives the posterior mode of each pairwise correlation. For visualization
purposes, colors range between red (negative correlations) and blue (positive correlations) depending on the
magnitude of the median correlation and the degree to which the densities in the lower right diagonal are filled
reflects the width of the widest highest density interval that excludes zero (smaller for distributions that assign
zero a high probability). See the online article for the color version of this figure.

Figure 12. Posterior distribution over eigenvalues of the matrix of correla-
tions between only evidence-related (� and �) individual participant parame-
ters. Bars depict 95% credible regions and points depict posterior means.
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tasks. Although the sets of factors describing items and individuals
are similar in many ways, they differ in other important aspects:

Episodic memory. For both individuals and items, the accu-
racy of episodic memory across all tasks was related. Whereas
only accuracy-related parameters tended to load together for indi-
viduals, for items both episodic accuracy and response bias pa-
rameters (�’s) loaded together. This suggests that the bias-related
parameters for individuals can be interpreted separately from their
episodic memory ability, with ability arising from encoding and
retrieval processes and bias arising from decision-related pro-
cesses. For items, as noted above, the coupling of accuracy and
bias parameters indicates that this factor represents an item’s
ability to support correct memory (the sum of � and �) rather than
its resistance to false memory.

Recall rate. For individuals, the rate at which they produce
responses in both cued and free recall loaded together, and were
slightly correlated with accuracy in single-item and associative
recognition. For items, only the rate at which a target item elicits
responses loaded on a separate factor, with uncertain relation to
other item parameters or normative characteristics. Thus, although
the first two factors for both items and individuals delineate the
relationships between different aspects of episodic memory per-
formance, they do so along different lines. The memory processes
engaged by individuals can be described in terms of overall across-
task accuracy (individual factor 1) and rate of responding in recall
tasks specifically (individual factor 2), whereas the information
provided by items can be described by across-task accuracy and
response rate together (item factor 1) with a special role for target
response rate in cued recall (item factor 2). This points to a

difference between how cue and target items affect cued recall
performance—the quality of a cue is more closely related to its
other mnemonic properties (e.g., its ability to be correctly recog-
nized or freely recalled) whereas the quality of a target can be
influenced by other factors.

Lexical decision. Parameters related to lexical evidence
loaded on separate factors for both individuals and items, empha-
sizing that not only do episodic and lexical memory engage dif-
ferent processes (at the individual level), they rely on different
kinds of information (at the item level).

Bias. For items, a bias to be recognized as having been studied
loaded on its own factor while, for individuals, a tendency to
accumulate positive recognition evidence for single words was
related to the tendency to do the same thing for word pairs. As
noted above, however, the apparent idiosyncratic nature of an
item’s recognition bias—which was not correlated with any of a
word’s normative properties—means that it is difficult to identify
any regularities in the information carried by an item that tends to
yield positive recognition responses. Instead, there appears to be
more structure in how participants accumulate recognition evi-
dence, where similar processes appear to be involved in recogniz-
ing words and word pairs.

Discussion

We presented results from a large-scale study investigating how
individual performance was correlated between different memory
tasks and how the information contained within different items
supports performance in each of these tasks. We analyzed these
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Figure 13. Posterior distributions of the loadings of evidence-related individual participant parameters (see
Table 2) on factors formed by orthogonal rotation of their top four principal components. As described in the
main text, each factor was assigned a label on the basis of which parameters loaded most strongly on that factor.
The saturation of each distribution and label visually indicate the magnitude and uncertainty of each loading. See
the online article for the color version of this figure.
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data using a hierarchical Bayesian model to simultaneously esti-
mate parameters reflecting individual performance and item con-
tributions for each task. We interpreted the resulting correlations
among item and individual parameters with the help of their
principal components, identifying latent dimensions that describe
how groups of parameters between and within tasks covary. We
identified four latent dimensions that characterized the variation
among participant performance as well as four similar dimensions
reflecting how item information contributed to performance in
each task. The four evidence-related dimensions for items and
individuals related to episodic memory accuracy, rate of recall,
lexical memory, and bias. We further investigated correlations
between item dimensions and normative characteristics of words,
finding that concreteness and semantic specificity support episodic
memory for words whereas lexical memory largely depends on the

orthographic/phonological properties of a word. Below, we sum-
marize our key results and explicate how they fit with and can help
to unify existing memory theory, followed by a discussion of
future analyses and implications for individual differences.

Theoretical Implications

The major findings from our analyses can be summarized as
follows:

1. Lexical access depends primarily on orthographic/pho-
nological information. Words that are shorter and/or
more orthographically/phonologically typical are easier
to identify as words.
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Figure 14. Posterior distributions over correlations between item parameters. Parameter names are given along
the diagonal (see Table 3). The lower diagonal depicts the marginal posterior density of each pairwise correlation
whereas the upper diagonal gives the posterior mode of each pairwise correlation. For visualization purposes,
colors range between red (negative correlations) and blue (positive correlations) depending on the magnitude of
the median correlation and the degree to which the densities in the lower right diagonal are filled reflects the
width of the widest highest density interval that excludes zero (smaller for distributions that assign zero a high
probability). See the online article for the color version of this figure.
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2. Episodic memory depends primarily on semantic in-
formation. Memory for single items and associations
as well as the ease with which an item can be recalled
are all enhanced when a word refers to a specific
concrete entity and/or is used only in specific dis-
course contexts.

3. Among individual participants, accuracies across all
episodic memory tasks are strongly correlated with
one another but only weakly correlated with accuracy
in lexical decision. This suggests that although all
episodic memory tasks rely to an extent on a shared set
of processes, these are largely separate from those
involved in lexical access.

4. For both items and individuals, response rate in recall
tasks involved a separate factor from other episodic
tasks, suggesting that recall involves additional pro-
cesses and information beyond those involved in other
episodic memory tasks.

As we describe below, many of these results can be related to
the structure of global memory models (e.g., Clark & Gronlund,
1996; Gillund & Shiffrin, 1984; Hintzman, 1988; Humphreys et
al., 1989; Murdock, 1982), particularly in the claim that different
memory tasks involve similar memory structures that are simply
accessed in different ways depending on the task. Further, the
distinction we identified between lexical and episodic memory,
popularized by Tulving (1985), is closely related to modal models
of memory (Atkinson & Shiffrin, 1968) and to the reactivation
theory presented by Bower (1996), in that although semantic and
episodic memory may be separable, they are mutually dependent.
Indeed, the differences we found in residual time needed to access
the relevant memory evidence (see Figure 9) are consistent with
the kind of staged processing proposed by these models. In the
following, we describe how our results can help to further develop
global theories of memory that extend beyond individual tasks and
help explicate the relationship between lexical, semantic, and
episodic memory.

Orthography and lexical access. Orthographic and phono-
logical information play a central role in many models of lexical
access (e.g., Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001;
Jacobs & Grainger, 1994; McClelland & Rumelhart, 1981). Ac-
cording to these models, when a string of letters is presented, its
orthographic features (letters and letter combinations) are used to
activate traces in lexical memory corresponding to individual
words or senses (sometimes called “logogens”). These lexical

Figure 15. Posterior distribution over eigenvalues of the correlations
between item parameters. Bars depict 95% credible regions and points
depict posterior means.
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Figure 16. Posterior distributions of the loadings of each item parameter (see Table 3) on factors formed by
orthogonal rotation of the top four principal components. As described in the main text, each factor was assigned
a label on the basis of which parameters loaded most strongly on that factor. The saturation of each distribution
and label visually indicate the magnitude and uncertainty of each loading. See the online article for the color
version of this figure.
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entries are activated to the extent that their orthographic features
are similar to those of the presented string, such that words with
more regular spellings will tend to be activated by more word-like
letter strings, due to their overlapping orthographic features. Se-
mantic aspects of a word may also play a role in lexical access,
with multiple senses or rich semantics providing a boost in overall
lexical activation (Buchanan et al., 2001; Pexman, Hargreaves,
Siakaluk, Bodner, & Pope, 2008; Yap, Tan, Pexman, & Har-
greaves, 2011); we found only weak correlations between lexical-
ity and semantics. The overall degree of lexical activation engen-
dered by a letter string is used to make a lexical decision (e.g.,
Wagenmakers et al., 2004).

We note that features of the current context must also play a role
in lexical decision, because of the ubiquitous long-term priming
effects that have been found in this task (Logan, 1988; Scarbor-
ough et al., 1977; Schooler, Shiffrin, & Raaijmakers, 2001). Be-
cause individuals in our experiment did not encounter the same

word in more than one block, we are not in a position to assess the
degree to which context may play a role in lexical decision. It is
possible, for instance, that the boost granted to a word by virtue of
having multiple senses may be attributable to context, with these
words having a higher baseline level of activity by virtue of being
used in multiple ways. It has also been found that repetitions of
words that retain specific features (e.g., speaker or prosody) yield
improved lexical access, suggesting that episodic (or at least
context-specific) memory can interact with lexical access (Gold-
inger, 1998).

The role of semantic information. Lexical memory associ-
ates the phonological and orthographic features of a word with its
semantic features. Semantic features must, of course, be learned
over time via linguistic training and experience. Many theories of
semantics postulate that these semantic features reflect not only the
features of the entities to which a word refers (e.g., “four legged-
ness” and “furry” for dogs Collins & Quillian, 1969; Rosch &

Table 4
Examples of the Words With the Highest and Lowest Median Scores on the Four Item Factors, the Loadings of Which Are Shown in
Figure 16

Score
Item Factor 1: Supports

episodic memory
Item Factor 2: Often
recalled given a cue

Item Factor 3:
Word-like

Item Factor 4:
Biased to recognize

Highest MOM SUGGEST DAD COMMUNITIES
DAD FINISH GOAL EXPERIMENT
SEX STRONGER DANCE SECRETARY
CHINESE BIGGER FOOTBALL MACHINERY
GRANDMOTHER EDUCATIONAL FUNNY MECHANICAL

Lowest FORMING STOCK CONTINENT SUGGEST
RECOGNIZE HAVEN CHOSE ADDING
GRANTED NEIGHBORHOOD OUGHT FEWER
INTENDED WHEAT RODE NODDED
SLIGHT TOM ILLUSTRATION LEG
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Figure 17. Posterior distributions over Kendall’s � rank correlations between each item’s score on each factor
(as depicted in Figure 16) and its normative lexical characteristics (as described in Table 1). For visualization
purposes, the lightness of each distribution reflects how strongly it deviates from zero. See the online article for
the color version of this figure.
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Mervis, 1975; E. E. Smith, Shoben, & Rips, 1974) but their
relationships to other words and the situations in which they are
used. The notion that semantics are derived from patterns of
use—reflected in the oft-cited aphorism that “you shall know a
word by the company it keeps” (Firth, 1957)—is ubiquitous in
computational linguistics and information retrieval, serving as the
basis for systems like Latent Semantic Analysis (Landauer &
Dumais, 1997) and Topic modeling (Griffiths, Steyvers, & Tenen-
baum, 2007), both of which have been shown to account for
human semantic judgments. Other psychologically motivated con-
textual models of semantics (e.g., Jones & Mewhort, 2007; Lund
& Burgess, 1996) also embody the idea that what we call seman-
tics can be interpreted as a word’s aggregate pattern of use.
Although most of these models are based purely on linguistic
co-occurrence data, this turns out to be strongly correlated with
perceptual experience (Riordan & Jones, 2010), consistent with the
strong negative correlation between concreteness (perceptual con-
tent) and semantic diversity (pattern of use) in our study (see Table
5). Indeed, even very abstract concepts may have a basis in
concrete perception (Barsalou, 1999). Further, developmental
studies have found that even very young infants are sensitive to the
aggregate patterns of co-occurrence between words and between
words and their environment (L. B. Smith & Yu, 2008; L. B.
Smith, Suanda, & Yu, 2014), suggesting that such “statistical”
information is fundamental to word-learning.

Our results suggest that both single words and word pairs are
encoded in terms of the semantic features associated with the
words involved, such that more distinctive semantic features yield
stronger memory at both encoding and retrieval. Here, “distinc-
tive” semantic features means that a word refers to a specific
concrete entity, and is thereby associated with perceptual features
of that entity (Paivio, 1969), and/or it is used only in specific
discourse contexts (low semantic diversity) and is therefore asso-
ciated with a narrow set of patterns of use (Adelman et al., 2006).
These strong memories manifest at encoding by virtue of allowing
for better recognition of intact pairs and better recall of an asso-
ciated word. Strength of semantic features must also play a role at
retrieval, in that it is associated with discriminability in single-item
recognition (i.e., not just recognition of studied words, but the
ability to reject an unstudied but semantically distinctive word).
Feature distinctiveness and the resulting differentiation between
event memories is a core component of likelihood-based models of
episodic memory (McClelland & Chappell, 1998; Shiffrin &
Steyvers, 1997) and has been found to be critical for explaining a

variety of memory phenomena across a variety of stimuli (not just
words; Cox & Shiffrin, 2017; Kýlýç, Criss, Malmberg, & Shiffrin,
2017; Nosofsky & Zaki, 2003; Steyvers & Malmberg, 2003).

Relation between memory for items and associations. We
found that accuracy across all episodic memory tasks were mutually
correlated, however single-item and associative recognition were cor-
related particularly strongly, with accuracy on each task loading on
the same factors for both individuals and items. This implies that these
two tasks, despite ostensibly asking different questions (“was this item
studied?” vs. “given that these items were studied, were they studied
at the same time?”) actually rely on similar memory processes and
similar information stored in memory. This is in contrast to many
dual-process theories which assume that associative recognition can
only be carried out using a secondary recall-like process that is
independent of the processes involved in recognition of single items
(e.g., Jacoby, 1991; Yonelinas, 1997).

Our results do, however, accord with a growing body of evi-
dence for a close similarity between recognition of single items
and of associations. This similarity could arise either because items
and associations are encoded using similar information or because
the processes used to retrieve item and associative information are
related, or both. We are not in a position to adjudicate this question
here, although we note that other work from our laboratory sup-
ports the idea that item and associative information are both stored
and retrieved using similar processes (Cox & Criss, 2017), and that
memory for associative information involves elaborating or inter-
relating information about items (Cox & Shiffrin, 2017; see also
Dosher, 1984; Dosher & Rosedale, 1989, 1991, 1997; McGee,
1980). Consistent with the idea that item and associative informa-
tion are encoded in a similar manner, we found that the same item
properties, like concreteness and semantic specificity, that make a
single word easy to recognize (and to reject when unstudied) also
make it easy to recognize a pair in which that word appears.
Finally, the fact that an item’s ability to support accurate cued
recall (as either a cue or a target) loads on the same factor as its
ability to support accurate single-item and associative recognition
lends credence to the idea that these correlations arise from how
well an item supports the encoding of an association.

Additional processes in recall. Recall parameters loaded on
additional factors for both items and individuals, suggesting the in-
volvement not only of additional processes in recall tasks but addi-
tional information as well, beyond that relevant to other episodic
memory tasks. Two aspects of recall distinguish it from recognition,
which may account for the additional processes and information

Table 5
Kendall’s � Rank Correlations Between Normative Characteristics of the Item Stimuli

Characteristic HAL Length OLD20 Num. syll. PLD20 Concr SemD
Num.
sense SND

KF .36 .11 .12 .15 .12 �.16 .17 .02 �.05
HAL — �.03 �.01 .02 .01 �.12 .17 .11 �.06
Length — — .73 .75 .71 �.25 .15 �.22 �.05
OLD20 — — — .69 .75 �.26 .12 �.20 �.05
Num. syll. — — — — .73 �.30 .18 �.29 �.05
PLD20 — — — — — �.26 .13 �.27 �.05
Concr — — — — — — �.41 .10 .06
SemD — — — — — — — .12 �.18
Num. sense — — — — — — — — �.16
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involved: first is the increased importance of context, second is the
need to produce an item without support from an explicit cue.

Context is more important in recall—particularly free recall—than
in recognition in part because of the structure of our experiment.
Context is, by definition, crucial for any episodic memory task—at
least those that use familiar stimuli, like words—because participants
must be able to distinguish occurrences of an item during the exper-
iment from those prior to the experiment. The distinction between
lexical decision and single-item recognition makes this clear: in lex-
ical decision, participants should give a positive response if they have
encountered the test item at all, whereas in single-item recognition,
they should only give a positive response if they have encountered the
test item in the preceding study context. However, because no partic-
ipant would encounter the same item in more than one study/test
block, the contextual information needed for recognition tasks (SR
and AR) would not need to distinguish between different blocks, only
between the experimental context and context outside the experiment.
Although a variety of obvious features distinguish the experimental

context from other experience (e.g., the unusual tasks, the unusual
setting, etc.), few such features distinguish between blocks within our
experiment (cf. Klein, Shiffrin, & Criss, 2007; Mensink & Raaijmak-
ers, 1988), as required for recall and as made evident in the pattern of
prior-list intrusions in FR. Indeed, to the extent that the current context
was used as a retrieval cue, one would expect a greater mnemonic
advantage for recent experience within a list as well, consistent with
the presence of recency effects in CR and FR and the absence of such
in either SR or AR (see Figure 18; note also the primacy effect that is
exclusive to FR). It may be that prominent items—those that are more
easily recognized and/or recalled—can overcome any mismatch be-
tween the current list context and that of prior lists, such that the
ability to produce only items from the most recent study list entails
additional processes on the part of participants. These processes may
involve forming associations between the specific study context and a
sufficiently distinctive array of semantic features (Raaijmakers,
2003). In addition, a semantically distinctive item may also be more
effective in driving the formation of the temporal context associated
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Figure 18. Top panels depict the probability of correct recognition as a function of serial position within the
study list of either the item (for SR, top left) or pair (for AR, top right); error bars in these panels denote �1
within-subject standard error of the mean. Bottom panels depict the number of observed correct responses in
cued recall (bottom left) and free recall (bottom right) as a function of serial position within the study list. Note
that, because words were studied in pairs, study position refers to the position at which the pair containing the
word was studied.
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with the list (Howard & Kahana, 2002; Polyn, Norman, & Kahana,
2009).

Recall also entails producing a response “from scratch,” rather than
choosing between a set of given alternatives (like “yes” or “no”). For
that reason, one might expect either that overall rate of recall would be
related to verbal/lexical ability or that more typical words would be
produced more often in recall. Although there are positive correlations
between CR and FR parameters and lexical memory (�LD) for both
items and individuals, they are not strong enough to emerge as
separate factors in our analyses. However, the degree to which a word
supports good episodic memory was negatively correlated with or-
thographic/phonological complexity, albeit not as strongly as with its
semantic characteristics. This is consistent with a role for lexical
memory at encoding, as noted above, but perhaps also at retrieval: If,
as we have found, episodic memory is encoded largely in terms of
semantic features, then it is these features, not orthographic/phono-
logical ones, that must be used to decide what word to produce. In
essence, producing a recall response reverses the process of episodic
storage: During storage, orthography is used to access lexical mem-
ory, from which semantic features are extracted and used to encode
the item. During recall, stored semantic features are used to access
lexical memory, from which orthography is extracted and used to
produce the item. Various extant models involve something like this
production process (e.g., J. A. Anderson, 1973; Hintzman, 1984;
Metcalfe Eich, 1982; Plate, 2003), which is sometimes referred to as
“recovery” of an item, in contrast to the “search” process that isolates
a memory trace (e.g., Gillund & Shiffrin, 1984; Raaijmakers &
Shiffrin, 1981). We note, however, that once participants have pro-
duced a response, it is possible for them to use that response to cue
subsequent retrieval, as postulated by many models of recall (Howard
& Kahana, 2002; Polyn et al., 2009; Raaijmakers & Shiffrin, 1981).
The extent to which this “auto-cuing” plays a role in our free recall
data is currently under investigation, and we note that recent work has
identified this ability as an important indicator of individual differ-
ences (Healey, Crutchley, & Kahana, 2014; Healey & Kahana, 2016;
Kılıç, Criss, & Howard, 2013).

Relation between cued recall and other tasks. For individ-
uals, the accuracy of their responses in cued recall was closely
related to their accuracy in all other episodic tasks, including those
that only require item information (e.g., single-item recognition).
Individuals’ response rates in cued recall were, however, more
closely associated with their response rates in free recall than with
those in recognition. Coupled with the observations of a strong
recency effect in free recall, weak recency effects in item or
associative recognition, and a moderate recency effect in cued
recall (see Figure 18), cued recall appears to exhibit properties of
both recognition and free recall. Although accurate cued recall
depends on the same memory processes that support recognition,
responding in cued recall relies in part on the contextual cuing and
response generation processes needed in free recall.

Relation between lexical and episodic memory. Taken to-
gether, the weak correlations between lexical and episodic accu-
racy and the relative importance of semantic versus orthographic/
phonological information for lexical and episodic tasks suggest
that lexical access and episodic retrieval are largely separate,
although as we noted above, they interact in important ways.
Indeed, the very fact that semantic information is so important for
episodic memory would imply that information stored in lexical
memory is crucial for forming episodic memories. That lexical

access acts as a “first stage” prior to the encoding of semantic
features in episodic memory is consistent with the greater speed at
which people can make lexical decisions versus recognition mem-
ory decisions (Figures 4 and 9; see also Hintzman & Curran, 1997)
and is a key feature of the modal model of memory (Atkinson &
Shiffrin, 1968) and the reactivation theory of Bower (1996). Ease
of lexical access also aids the formation of associations between
words. This reinforces the notion, noted above, that associations
are encoded by elaborating or interrelating the semantic features of
the items involved—to the extent that such features are easy to
access, they can enter the elaboration/interrelation process more
readily. For the semantic features extracted from lexical memory
to be helpful, however, they must be sufficiently distinct (as noted
above); highly typical features will tend to be shared by many
words, thereby diluting the specificity of any associations encoded
based on those features (note the relation between an item’s
word-likeness and tendency to be produced in cued recall).

Over longer timescales than those involved in the present study,
episodic memory must also contribute to lexical memory in that
the perceptual and conceptual features stored in lexical memory
must be learned from experience: perceptual features of an object
referent must be associated with its label, giving rise to the
importance of concreteness; and conceptual features of the dis-
course contexts in which a word is used grow to be associated with
a word, giving rise to the importance of semantic diversity/spec-
ificity. In general, our results support a role for separate but
interactive lexical and episodic retrieval systems (e.g., Kumaran &
McClelland, 2012; Nelson & Shiffrin, 2013).

Limitations and Future Directions

In the present study, we presented a large-scale correlational
analysis with the aim of characterizing the broad outlines of how
memory is deployed across various tasks. Although we focused on
the strongest sets of correlations, because these are most likely to
be robust, taking this broad view meant that we were forced to skip
over many fine details. However, we do not expect this will be the
final word with regard to this dataset or the tasks represented
therein. In addition to ongoing work in our laboratories, by making
our data and analysis methods publicly available (via the Open
Science Framework; osf.io/hctyg), we enable and encourage other
investigators to conduct their own explorations of the relationships
between different memory tasks among items and individuals,
including to develop and test more elaborate cognitive models of
these tasks than the relatively simplistic measurement models we
employed as part of our analyses.

One interesting avenue for future investigation concerns the
within- or between-trial dynamics of recall in either cued or
uncued settings. Within-trial dynamics in cued recall have been
studied more extensively than that for free recall (see, e.g., Aue,
Criss, & Novak, 2017; Diller, Nobel, & Shiffrin, 2001; Hopper &
Huber, 2016; Nobel & Shiffrin, 2001; Sederberg, Howard, &
Kahana, 2008); however, unlike with binary choice tasks, there is
not even a marginally agreed-upon set of modeling frameworks for
addressing recall dynamics. Across-trial dynamics have been
found to be especially important in free recall (Howard & Kahana,
2002; Polyn et al., 2009), and test position effects are often found
in recognition as well (Aue, Criss, & Prince, 2015; Criss, Malm-
berg, & Shiffrin, 2011; Roediger & Schmidt, 1980; Schwartz,
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Howard, Jing, & Kahana, 2005). Although including these factors
in the present analyses would go far beyond the scope of the
present study, deeper understanding of recall dynamics will un-
doubtedly be a boon to the study of memory in general.

Although we studied the relationship between items and the
entire lexicon—their orthographic and phonological regularity,
their semantic distinctiveness, and so forth—we did not study the
relations among items within each study list. This is an active and
important area of study (Criss & Shiffrin, 2004; Freeman et al.,
2010) and another that we and others are pursuing. Unfortunately,
estimating item–item interactions in a purely data-driven manner
would require orders of magnitude more observations than even
the large amount we already had, because one would need at least
one observation for each combination of two items. Bringing in
outside measures of word–word similarity, on the other hand, is
highly model-dependent in that different measures of semantic
and/or orthographic similarity/relatedness depend on models of
orthographic and semantic representation. The aim of the present
study was to see what could be concluded from the data alone,
without strong commitment to any particular models, thus we did
not include these aspects in our broad-level overview.

Finally, we note some features of our design that preclude certain
inferences: First, our design means that we cannot estimate interac-
tions/correlations between items and individuals. To measure such
interactions would require multiple observations for each combination
of item and individual, which would entail either a prohibitive amount
of data collection or a much more restricted set of stimuli. Although
there is some virtue in using a smaller stimulus pool, doing so would
limit the ability to generalize beyond a limited set of stimuli and make
inferences about the relationship between normative stimulus charac-
teristics and memory performance, as we were able to accomplish
using a larger stimulus pool. Second, while informing participants of
the task only after study means that the study situation is effectively
balanced across tasks, it also means that we cannot study any inter-
actions between study strategy and test task. For example, if partici-
pants did not know that associative information was important, would
we have found as strong of a correlation between single-item and
associative recognition? Perhaps not, although we note that while
participants can adjust the degree to which they encode associative
information, encoding more associative information does not impair
the encoding of item information (Hockley & Cristi, 1996) nor does
expectation strictly govern what material is retained (R. C. Anderson
& Pichert, 1978), suggesting that any interactions between study and
test, at least for the kinds of materials and tasks we examined, are
unlikely to distort the picture that emerged from our efforts.

Implications for Individual Differences

Our analyses imply that certain memory processes may be func-
tionally dissociated from one another at an individual level, such that
they may be related to various individual differences such as age or
intelligence/capacity (as noted in the introduction). Although episodic
memory performance in general declines with age, it does so espe-
cially for associative recognition and recall tasks (e.g., Naveh-
Benjamin, 2000; Ratcliff et al., 2011; Zacks, Hasher, & Li, 2000).
Decrements in recall performance have been attributed to the need for
additional resources beyond those needed for recognition (Craik &
McDowd, 1987) as well as an ability to use temporal context as an
effective retrieval cue (Healey & Kahana, 2016); both are consistent

with a separate factor related to responding in recall (individual factor
2). Differences in measures of working memory capacity—not nec-
essarily related to age—have been used to explain differences in the
ability to conduct controlled search of episodic memory (Oberauer,
2005) and that such processes are related to “fluid” intelligence
(Unsworth & Engle, 2007). Consistent with an interpretation of in-
telligence/capacity as being related to controlled use of context in
retrieval, Healey et al. (2014) reported that a factor pertaining to
temporal context predicted IQ better than other aspects of free recall
(although recall accuracy remained a good predictor of intelligence as
well).

Although the selective decrease in recall performance with age
and/or working memory is consistent with a functional dissocia-
tion between overall episodic memory quality (individual factor 1)
and recall rate (individual factor 2), a selective decline in associa-
tive recognition over item recognition (Ratcliff et al., 2011) ap-
pears to conflict with our results. Further complicating matters, a
working memory deficit has been invoked to explain the decline in
associative recognition with age (Buchler, Faunce, Light, Gottfred-
son, & Reder, 2011), just as with recall, but in this case working
memory is needed not just to retrieve, but to encode the association
as well. It is possible that we did not detect a similar distinction
because of the limited age range of our participants, although we
note that, unlike in many other studies of memory and aging, our
participants could not “tune” their encoding to a specific memory
task; thus it is possible that some differences in memory perfor-
mance with age could result from older adults adopting different
study strategies than younger adults.

Concluding Remarks

We have presented results of a large-scale correlational analysis
examining how different memory tasks engage similar or different
processes and rely on similar or different information. We found
that the processes and information involved across a variety of
episodic memory tasks were largely similar, relying primarily on
semantic information, and were generally distinct from the infor-
mation and processes involved in lexical access, which depended
primarily on orthographic/phonological information. Episodic
tasks that depended on memory for associations were strongly
correlated with those that depended on memory for single items,
for both individuals and items, suggesting that such tasks rely on
similar processes and that item and associative information are
encoded in a similar manner. Recall differed from recognition
primarily in terms of response rates, which we hypothesized to be
attributable to the relative importance of contextual information in
recall and the need to select a response on the basis of a more
impoverished cue. Although a complete portrait of the information
and processes underlying human memory requires detailed ac-
counts of each task, our analyses provide a glimpse of its overall
shape that can guide future theoretical developments.
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Appendix A

Method for Rotating Principal Components

We found “factors” representing interpretable dimensions of variability by orthogonal rotation of the principal components of each
correlation matrix, as described in the main text. Our goal was twofold: First, to make it easier to interpret the distributions of loadings
of each parameter on each dimension (factor); second, to ensure that the structure of the correlations was not distorted during the rotation
process.

The first goal was accomplished by selecting the “infomax” rotation criterion, which takes a given set of orthogonal loadings and finds
a rotation of those loadings that jointly maximizes the information conveyed about each parameter by each factor and the information
conveyed about each factor by each parameter (Browne, 2001; McKeon, 1968). Specifically, the infomax criterion to be minimized for
a given P � M matrix of loadings � � [�ij] is given by

g(�) � log M
È
Upper bound
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È
Each factor accounts for equal number of parameters

where we have labeled each term by which aspect of the loading matrix it quantifies. We seek to find a rotation matrix T that, when applied
to the loading matrix �, yields the minimum g(�T).

Because we are dealing not with a single set of principal component loadings, but with a large sample of such loadings, it would be
inadvisable to find a separate rotation to each sample. The resulting distribution would be a nonlinear distortion of the original posterior
distribution of loadings and would, therefore, not represent the structure of the correlations inferred from the data. Thus, to accomplish
our second goal, we found a single rotation matrix T that optimized the average infomax criterion across all samples of principal
component loadings. Because this single rotation T, once found, is applied uniformly across all samples, the resulting distribution of
loadings (on factors) is a linear transformation of the original distribution of loadings (on principal components) and therefore does not
distort the posterior.

(Appendices continue)
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Appendix B

Analysis of Correlations Among All Participant Parameters

As in the analyses in the main text, we obtained the eigenvalues
and eigenvectors of each sample of the full correlation matrix of
individual parameters. Boundary separation, bias, and residual
time parameters all entail transformations, as described in the main
text. We computed correlations using the untransformed boundary
separation and bias parameters, because they were originally esti-
mated on this untransformed scale (logarithmic for boundary sep-
aration and logistic for bias). However, because the scale of the
residual time parameters is determined by the minimum response
time for each participant in each task, these were left on their
transformed scale (i.e., on the scale of seconds) when computing
the correlation matrices.

As shown in Figure B1, there are eight eigenvalues that are
credibly greater than or equal to one, indicating that the pattern of
correlations among individual parameters can be satisfactorily
accounted for by eight principal components which collectively
account for a median of 76 percent (with a 95% credible interval
of 75%–77%) of the total correlation among individuals. We again
performed an orthogonal rotation on each sample of the loading
matrix of these top eight principal components according to the
“infomax” criterion to obtain a distribution of “factors,” shown in
Figure B2, that describe the essential correlational structure among
the individual participant parameters.

Individual factors 1, 2, and 3 are quite similar to the same
factors identified in the analysis in the main text, whereas the
fourth factor identified in the main text ends up being split into two
separate factors, numbered 7 and 8 below. This analysis also finds
that boundary separation and residual time form their own factors,
suggesting they reflect individual differences that are relatively
stable across tasks.

Individual Factor 1: Episodic Accuracy

This factor reflects the correlations among the accuracy-related
parameters across all episodic memory tasks and their slight cor-
relation with accuracy in lexical memory.

Individual Factor 2: Recall Propensity

This factor accounts for rate of responding in both cued and free
recall and illustrates their correlation with boundary asymmetry (a
form of response bias) in both single-item and associative recog-
nition.

Individual Factor 3: Lexical Evidence

This factor accounts for both drift and accuracy in the evidence
accumulated for the lexical decision task.

Individual Factor 4: Lexical Bias

Separate from factor 3, this factor represents a correlation be-
tween lexical decision accuracy and response bias in lexical deci-
sion.

Individual Factor 5: Boundary Separation

The total amount of evidence a participant needs before com-
mitting to a decision is correlated across tasks, indicating that
response caution is a relatively stable property of participants,
particularly given that this correlation holds between different
types of task, namely, lexical and episodic, which appear to in-
volve different kinds of evidence.

Individual Factor 6: Residual Time

As with boundary separation, residual time is correlated across
tasks, even between lexical and episodic tasks. Because residual
time includes such things as the time taken to execute a motor
response, it is sensible that this should be preserved across tasks
that use the same response procedures.

Individual Factor 7: Single-Item Drift

This factor reflects two apparent trade-offs, one between re-
sponse boundaries and drift rate in single-item recognition and
another between overall response rates and response accuracy in
both cued and free recall. That said, there remains considerable
uncertainty regarding the loadings on this factor (note the very
broad distributions), so we hesitate to interpret it too closely.

(Appendices continue)

Figure B1. Posterior distribution over eigenvalues of the matrix of cor-
relations between individual participant parameters. Bars depict 95% cred-
ible regions and points depict posterior means.
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Individual Factor 8: Associative Drift

This factor identifies a trade-off between two sets of parameters
in associative recognition: boundary separation and drift, on the
one hand, versus residual time and bias on the other. Although we
again do not wish to over-interpret this factor, we note that in the
model proposed by Cox and Shiffrin (2017), item information
tends to be retrieved earlier than associative information, such that
the information needed to distinguish between intact and rear-
ranged pairs in AR is only available later in retrieval. As a result,

accumulating evidence earlier—which would correspond to a
shorter residual time prior to the onset of evidence accumulation—
would yield more positive recognition evidence—higher drift
rate—because the items in both intact and rearranged pairs had
been studied. To achieve equivalent performance on the AR task
(note that accuracy in AR does not load on this factor), participants
would need to adjust their response boundaries to account for this
early positive evidence by moving the “yes” response boundary
upward (increased boundary separation and decreased bias).

(Appendices continue)
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Figure B2. Posterior distributions of the loadings of each individual participant parameter (see Table 2) on
factors formed by orthogonal rotation of the top eight principal components. As described in the main text, each
factor was assigned a label on the basis of which parameters loaded most strongly on that factor. The saturation
of each distribution and label visually indicate the magnitude and uncertainty of each loading. See the online
article for the color version of this figure.
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Appendix C

Analysis of Correlations Among All Item Parameters, Including Pseudowords

As described in the main text, our primary analysis incorporated
only the LD accumulation rate for words and excluded the rate for
pseudowords. Here, we present a parallel analysis that includes both
LD bias and accuracy parameters for items, thereby allowing pseu-
dowords to impact the analysis. To anticipate, the only substantial
difference from the analysis presented in the main text is that it
becomes more difficult to interpret correlations between LD evidence

parameters and normative characteristics of words. This is because
many of these characteristics become meaningless when applied to pseu-
dowords (e.g., a pseudoword has no concreteness). Nonetheless, we
present the full analysis for completeness and to provide some evidence
of the robustness of the factors identified in our primary analysis.

The distributions of pairwise correlations among all item pa-
rameters are shown in Figure C1. When the eigenvalues and

βi
LD −0.18 0.06 −0.1 0 0.02 −0.03 −0.01 0.06 0.04 −0.02 −0.12

δi
LD −0.11 0.22 0.22 0.31 0.21 0.24 0.18 0.21 0.22 0.2

βi
SR −0.02 0.1 −0.15 0.15 −0.1 −0.13 0.02 0.1 −0.07

δi
SR 0.5 0.7 0.78 0.17 0.71 0.64 0.57 0.55

βi
AR 0.62 0.59 0.24 0.52 0.48 0.57 0.61

δi
AR 0.82 0.57 0.86 0.82 0.72 0.54

βi
CR Cue 0.35 0.82 0.81 0.72 0.53

βj
CR Tar 0.49 0.54 0.48 0.29

δi
CR Cue 0.82 0.66 0.46

δj
CR Tar 0.71 0.44

βi
FR 0.67

δi
FR

Figure C1. Posterior distributions over correlations between item parameters. Parameter names are given along the
diagonal (see Table 3). The lower diagonal depicts the marginal posterior density of each pairwise correlation while
the upper diagonal gives the posterior mode of each pairwise correlation. For visualization purposes, colors range
between red (negative correlations) and blue (positive correlations) depending on the magnitude of the median
correlation and the degree to which the densities in the lower right diagonal are filled reflects the width of the widest
highest density interval that excludes zero (smaller for distributions that assign zero a high probability). See the online
article for the color version of this figure.

(Appendices continue)
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eigenvectors of each sample of the correlation matrix are com-
puted, four of the resulting components are associated with eigen-
values that are credibly greater than or equal to one, as shown in
Figure C2, and these components collectively account for a median

of 79% (95% CI of 76%– 81%) of the correlations among item
parameters. The factors formed by orthogonal rotation of these
components (Figure C3) preserve factors for overall episodic
memory quality and single-item recognition bias. The lexical
decision parameters and cued recall rate parameter are now
mixed into two factors, because of the uncertainty that arises
from the tradeoff between lexical bias (�i

LD, how word-like both
a word and its pseudoword form appear) and lexical accuracy
(�i

LD, how easy it is to distinguish between a word and its
pseudoword counterpart). The negative correlation between �i

LD

and �i
LD is a function of the fact that a more word-like word,

when distorted, tends to yield a more word-like pseudoword,
resulting in high bias (high �i

LD) but more difficulty discrimi-
nating between the word and its pseudoword counterpart (low
�i

LD). As in the main text, we computed the Kendall’s � rank
correlation between each word’s score on these factors and its
various normative characteristics, with the resulting distribution
of correlations shown in Figure C4. The correlations with the
two lexicality/cued recall factors differ from those computed as
part of the primary analysis, because, as mentioned above, these
properties either lose meaning or have different interpretations
between words and pseudowords.

Figure C2. Posterior distribution over eigenvalues of the correlations
between item parameters. Bars depict 95% credible regions and points
depict posterior means.
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Figure C3. Posterior distributions of the loadings of each item parameter (see Table 3) on factors formed by
orthogonal rotation of the top four principal components. As described in the main text, each factor was assigned
a label on the basis of which parameters loaded most strongly on that factor. The saturation of each distribution
and label visually indicate the magnitude and uncertainty of each loading. See the online article for the color
version of this figure.

(Appendices continue)
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Appendix D

Robustness of Exploratory Correlation Analyses

In this section, we explore the consequences of two important
choices on the factors that emerge from our analyses: first, the
choice of the number of principal components used to construct
factors via orthogonal rotation; second, the choice of which tasks
to include in the study. In each case, we are interested in whether
different choices would have led to different conclusions. We
show that, in general, the factors that emerge from these different
choices have interpretations that are identical or very similar to
those that we discuss in the main text, with any deviations being
reasonable.

Number of Components Used for Factor Construction

In the analyses presented in the main text, we used rotated
principal components to help understand the structure in the cor-
relations among both item and individual parameters, as estimated
from the data. By looking at factors formed by rotation of the
principal components of each correlation matrix, we get a picture

of the “most important” dimensions along which individuals and
items may vary, where “importance” is indicated by the eigenval-
ues associated with each principal component (which govern the
proportion of variability that each component can explain) and
“most important” hinges on the analyst’s choice of what counts as
a sufficiently large eigenvalue. In other words, there is a degree of
subjectivity in the choice of how many components deserve to be
focused on: Some researchers might prefer a smaller number,
which may not capture as much total variability but would restrict
the focus to only the most prominent features of the correlation
matrix. Other researchers might prefer a larger number, which
would provide a more intricate picture of the correlation matrix at
the cost of explanatory clarity (in the limit, of course, using all
principal components would leave us back where we started,
namely, the full matrix!). Coupled with our use of orthogonal
rotation, different choices of how many components were “impor-
tant” could lead different researchers to different conclusions.

(Appendices continue)
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Figure C4. Posterior distributions over Kendall’s \tau rank correlations between each item’s score on each
factor (as depicted in Figure C3) and its normative lexical characteristics (as described in Table 1). For
visualization purposes, the lightness of each distribution reflects how strongly it deviates from zero. See the
online article for the color version of this figure.
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In the main text, we chose to focus on the components associated
with eigenvalues greater than or equal to one. This is a commonly
used criterion that says, in essence, that a component is “important” if
it accounts for the variability in at least one parameter (the magnitude
of an eigenvalue of principal component of a covariance/correlation
matrix corresponds to the effective number of variables the variation
of which is accounted for by that component). In the following, we
demonstrate the consequences of selecting different numbers of com-
ponents for individual participants’ evidence parameters or item pa-
rameters, thereby demonstrating which dimensions remain consistent
as factors are added or subtracted.

Individual evidence parameters. We present the results of
applying our orthogonal rotation method based on several potential
choices for the number of components used to describe the corre-
lations among individual evidence parameters.

Two factors. These two factors are essentially the same as the
first two identified in the main text, one relating to episodic
accuracy (albeit with a larger loading for lexical accuracy) and
another to the propensity to respond in recall tasks (which now
involves a stronger loading of recognition drift parameters).

Three factors. Adding a third factor leaves the first two
essentially unchanged, with the third component accounting for
evidence (both drift and accuracy) in lexical decision as well as
drift in associative recognition.

Four factors. This is the number we selected for the purposes
of our main analyses. The first two factors again remain un-
changed, with factor 3 now exclusively related to lexical decision
and factor four accounting for drift in both single-item and asso-
ciative recognition.

Five factors. Going from four to five factors, drift in AR now
loads exclusively on its own factor (5) while drift in SR and the
two lexical decision evidence parameters are split between two
factors (3 and 4).

Six factors. The episodic accuracy and recall propensity fac-
tors (1 and 2) persist, with the remaining factors now devoted
entirely to single parameters, one for each evidence drift parameter
in LD, SR, and AR and one for accuracy in LD.

It is clear that different choices of the number of components
used to describe correlations among different evidence param-
eters lead to factors with similar interpretations, with those
factors generally splitting up as more components are added.
Factors corresponding to episodic accuracy and recall propensity
were found throughout, as was a distinction between lexical and
episodic task parameters. The drift-related bias parameters split off
into their own factors as more components were added, suggesting
that these drift/bias parameters play less of a role in defining the
structure of the correlations among individual evidence parameters
than do accuracy-related parameters.

Item Parameters

We now conduct a similar exercise with regard to the item
parameters, where we eschew evidence rates associated with pseu-
dowords in lexical decision, as in the main text.

Two factors. The first factor corresponds to the first factor
identified in the main text, namely, one that relates most of the
parameters in episodic tasks, including all episodic accuracy pa-
rameters. The second factor acts as a “grab-bag” for the remaining
parameters, including lexical evidence, item recognition bias, and
response propensity in cued recall.

Three factors. Although the first factor remains unchanged,
the second has now split into two factors, one accounting for
lexical evidence and cued recall response rate and another primar-
ily accounting for item recognition bias.

Four factors. This is the number chosen for the analysis in the
main text. The main effect of going from three to four components
is to split lexical evidence into its own parameter, separate from
either cued recall response rate or SR bias, which are accounted for
by their own respective factors.

Five factors. This is the point at which the first factor (related
to episodic tasks in general) begins to break apart, this time into a
factor for cued episodic tasks (recognition and cued recall) and one
for free recall (along with bias in associative recognition).

Six factors. Going from five to six factors sees parameters
related to free recall in their own factor, now separated from drift
in associative recognition.

The dimensions describing the correlations among item param-
eters remain consistent even with different numbers of dimensions.
As with parameters describing individual memory evidence, fac-
tors corresponding to episodic quality, recall rate, and lexical
evidence are apparent across a wide range of choices for number
of components, whereas several bias/drift parameters do not have
a consistent pattern of loadings, suggesting that they play a less
important role in defining the structure of the correlations among
item parameters.

Excluding Tasks From Analysis

In addition to the choice of number of components used for
factor construction, there is the design choice of which tasks to
include in the experiment and subsequent analyses. Although we
cannot (yet) assess the consequences of adding tasks to the exper-
iment, we can consider whether the same factors would have
emerged had we excluded particular tasks. For example, we found
that lexical decision (LD) tended to lie on a separate factor for both
items and individuals; would this factor then disappear if this task
were excluded?

Individual evidence parameters. Excluding parameters re-
lated to evidence in lexical decision results in three components
with eigenvalues credibly greater than or equal to one, as shown in
Figure D1a. After applying orthogonal infomax rotation to these
components, as described above, the distribution of loadings on
these three factors (Figure D1b) is similar to that reported in the
main text, with factors corresponding to episodic accuracy, recall
rate, and bias in recognition (particularly AR). Given the impor-
tance of bias in AR to the recognition bias factor, excluding

(Appendices continue)
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parameters related to associative recognition results in three compo-
nents with eigenvalues credibly greater than or equal to one (Figure
D2a), which when rotated yield a distribution of parameter loadings
(Figure D2b) that reflect factors for episodic accuracy, recall rate, and
lexical evidence, but no separate recognition bias factor.

These results are in contrast to when SR-, CR-, or FR-related
parameters are excluded. In each case, there are four components
with eigenvalues credibly greater than or equal to one (Figure D3a,

Figure D4a, and Figure D5a). The resulting factors are generally
similar to those found when all tasks are included: When single-
item recognition is excluded, the recognition bias factor only
includes a loading for bias in associative recognition (since the
other recognition task was excluded; Figure D3b). When cued
recall is excluded, the recall rate factor now emphasizes a trade-off
in free recall between overall response rate and the correctness of
recall responses (Figure D4b). Finally, when free recall is

(Appendices continue)
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Figure D1. Analysis of patterns of correlation among individual participant evidence parameters (�s and �s;
see Table 2), excluding those related to lexical decision. (a) Posterior distribution over eigenvalues of the matrix
of correlations. Bars depict 95% credible regions and points depict posterior means. (b) Posterior distributions
of loadings on factors formed by orthogonal rotation of the top three principal components. The saturation of
each distribution and label visually indicate the magnitude and uncertainty of each loading. See the online article
for the color version of this figure.
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excluded, an interesting pattern emerges in which response rate in
cued recall loads both with other episodic accuracy parameters as
well as bias in SR. This is notable in that it suggests that, while the
best predictor of recall rate in one task is recall rate in another (e.g.,
�s

CR), the tendency to recognize an item as having been studied
(�s

SR) also provides information about how likely one is to produce
a response when given a cue.

Item parameters. Doing the same thing with item-level pa-
rameters (where, again, we exclude the pseudoword accumulation
rates), we first note that there are three tasks for which one of their
parameters defined a factor in the main analysis: cued recall

(specifically, �j
CR), lexical decision �	i

LD 

�i

LD

2 �, and single-item
recognition (�i

SR). Therefore, we should expect that excluding any
of these tasks would effectively eliminate their corresponding
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Figure D2. Analysis of patterns of correlation among individual participant evidence parameters (�s and �s;
see Table 2), excluding those related to associative recognition. (a) Posterior distribution over eigenvalues of the
matrix of correlations. Bars depict 95% credible regions and points depict posterior means. (b) Posterior
distributions of loadings on factors formed by orthogonal rotation of the top three principal components. The
saturation of each distribution and label visually indicate the magnitude and uncertainty of each loading. See the
online article for the color version of this figure.
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factor. As shown in Figures D6a, D7a, and D8a, eliminating either
CR, LD, or SR results in a set of eigenvalues for which only three are
credibly greater than or equal to one and, as expected, the remaining
factors correspond to those from the main text that were not defined
by a parameter from the excluded task (Figure D6b, Figure D7b, and
Figure D8b). We note some important points: excluding LD leaves
the remaining factors essentially unchanged, consistent with a distinc-
tion between the information relevant for episodic memory and that
relevant to lexical access; excluding CR results in some residual
uncertainty between the word-likeness factor and recognition bias
factor; and excluding SR results in a recall rate factor that also

includes some aspects of free recall accuracy and associative drift.
This latter point echoes what happened for individuals when SR was
excluded, namely, that other tasks “pick up the slack” when informa-
tion from SR is unavailable, suggesting that SR performance is
important for characterizing both items and individuals. In contrast,
excluding parameters related to either associative recognition or free
recall results in four components with eigenvalues greater than or
equal to one (Figure D9a and Figure D10a) which each yield factors
(Figures D9b and D10b) with identical interpretations to those re-
ported in the main text. In all, this provides a strong validation for the
roles of each task in defining the structure of correlations within items.

(Appendices continue)
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Figure D3. Analysis of patterns of correlation among individual participant evidence parameters (�s and �s;
see Table 2), excluding those related to single-item recognition. (a) Posterior distribution over eigenvalues of the
matrix of correlations. Bars depict 95% credible regions and points depict posterior means. (b) Posterior
distributions of loadings on factors formed by orthogonal rotation of the top three principal components. The
saturation of each distribution and label visually indicate the magnitude and uncertainty of each loading. See the
online article for the color version of this figure.
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a

b

Figure D4. Analysis of patterns of correlation among individual participant evidence parameters (�s and �s;
see Table 2), excluding those related to cued recall. (a) Posterior distribution over eigenvalues of the matrix of
correlations. Bars depict 95% credible regions and points depict posterior means. (b) Posterior distributions of
loadings on factors formed by orthogonal rotation of the top three principal components. The saturation of each
distribution and label visually indicate the magnitude and uncertainty of each loading. See the online article for
the color version of this figure.
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a

b

Figure D5. Analysis of patterns of correlation among individual participant evidence parameters (�s and �s;
see Table 2), excluding those related to free recall. (a) Posterior distribution over eigenvalues of the matrix of
correlations. Bars depict 95% credible regions and points depict posterior means. (b) Posterior distributions of
loadings on factors formed by orthogonal rotation of the top three principal components. The saturation of each
distribution and label visually indicate the magnitude and uncertainty of each loading. See the online article for
the color version of this figure.
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Figure D6. Analysis of patterns of correlation among item parameters (see Table 3), excluding those related
to cued recall. (a) Posterior distribution over eigenvalues of the matrix of correlations. Bars depict 95% credible
regions and points depict posterior means. (b) Posterior distributions of loadings on factors formed by orthogonal
rotation of the top three principal components. The saturation of each distribution and label visually indicate the
magnitude and uncertainty of each loading. See the online article for the color version of this figure.
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Figure D7. Analysis of patterns of correlation among item parameters (see Table 3), excluding those related
to lexical decision. (a) Posterior distribution over eigenvalues of the matrix of correlations. Bars depict 95%
credible regions and points depict posterior means. (b) Posterior distributions of loadings on factors formed by
orthogonal rotation of the top three principal components. The saturation of each distribution and label visually
indicate the magnitude and uncertainty of each loading. See the online article for the color version of this figure.
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Figure D8. Analysis of patterns of correlation among item parameters (see Table 3), excluding those related
to single-item recognition. (a) Posterior distribution over eigenvalues of the matrix of correlations. Bars depict
95% credible regions and points depict posterior means. (b) Posterior distributions of loadings on factors formed
by orthogonal rotation of the top three principal components. The saturation of each distribution and label
visually indicate the magnitude and uncertainty of each loading. See the online article for the color version of
this figure.
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Figure D9. Analysis of patterns of correlation among item parameters (see Table 3), excluding those related
to associative recognition. (a) Posterior distribution over eigenvalues of the matrix of correlations. Bars depict
95% credible regions and points depict posterior means. (b) Posterior distributions of loadings on factors formed
by orthogonal rotation of the top three principal components. The saturation of each distribution and label
visually indicate the magnitude and uncertainty of each loading. See the online article for the color version of
this figure.
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Figure D10. Analysis of patterns of correlation among item parameters (see Table 3), excluding those related
to free recall. See the online article for the color version of this figure.
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