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Abstract 

Episodic memory refers to memory for specific episodes from one's life, such as working in 
the garden yesterday afternoon while enjoying the warm sun and chirping birds. In the 
laboratory, the study of episodic memory has been dominated by two tasks: single item 
recognition and recall. In single item recognition, participants are simply presented a cue 
and asked if they remember it appearing during the event in question (e.g., a specific flower 
from the garden) and in free recall they are asked to generate all aspects of the event. 
Models of episodic memory have focused on describing detailed patterns of performance in 
these and other laboratory tasks believed to be sensitive to episodic memory. This chapter 
reviews models with a focus on models of recognition with a specific emphasis on REM 
(Shiffrin & Steyvers, 1997) and models of recall with a focus on TCM (Howard & Kahana, 
2002). We conclude that the current state of affairs, with no unified model of multiple 
memory tasks, is unsatisfactory and offer suggestions for addressing this gap. 
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Tulving (1972, 1983, 2002) coined the term 
episodic memory to refer to the ability to vividly 
remember specific episodes from one's life. Episodic 
memory is often framed in contrast to other forms 
of memory which are not accompanied by the 
same experience. For instance, asking a subject 
"what did you have for breakfast?" usually elicits 
an episodic memory. In the process of answering 
the question, subjects will sometimes report re­
experiencing the event as if they were present. They 
might remember being in their kitchen, with the 
morning sun shining in and the sound of the 
radio, the smell of the coffee in the process of 
retrieving the information that they had a bagel 
for breakfast. Other times, subjects may not have 
memory for all associated details, but instead have 
a fuzzy general memory for the event. Both vivid 
and fuzzy episodic memories are situated in a 
particular spatia-temporal context. The nature of 
these two types of episodic experiences is under 

debate (see Box 1). In contrast, subjects can 
frequently answer factual questions, such as "what 
is the capital of France?" without any knowledge 
about the specific moment when they learned 
that piece of information. The association of 
a memory with a specific spatial and temporal 
context is considered the hallmark of episodic 
memory. 

This chapter is about mathematical and com­
putational models of episodic memory. This is 
something of an unusual topic. One could argue 
that there are no mathematical models of episodic 
memory as defined here. To date, there are no 
quantitative models that have attempted to describe 
how or why the distinctive internal experience 
associated with episodic memory sometimes takes 
place and sometimes does not. In contrast, models 
of episodic memory have focused on describing 
detailed patterns of performance in a set of 
laboratory memory tasks believed to be sensitive 



Box 1 Dual process models of 
recognition 
You go to the grocery store and pass many 
other shoppers. You pass one shopper who 
seems familiar. You consider saying hello, but 
you can't quite figure out how you know 
this person. If you were asked to perform 
an item recognition test ("have you seen this 
person before?"), you would have been much 
more likely to say yes for this shopper than 
for one of the other shoppers. Perhaps you 
would even express high confidence that you 
had seen the familiar shopper before. After 
thinking about it for a while, you might later 
remember that you met this person at a meeting 
last semester. You might remember his or 
her name, position and even details of your 
interaction and be able to report these pieces of 
information. 

The ability to distinguish this one familiar 
face from all the other unfamiliar faces you 
passed in the grocery store certainly requires 
some form of memory. Similarly, the ability 
to remember the details about your experience 
with that person also requires some form of 
memory. The question is whether those two 
abilities are best understood as points along 
a continuum or as distinct forms of memory, 
typically referred to as familiarity-a general 
sense of knowing that a probe is old-and 
recollection-the vivid recall of specific details 
about the probe. 

This question has been a major source of 
disagreement. It has been actively pursued 
in mathematical modeling {e.g., Klauer & 
Kellen, 2010; DeCarlo, 2003), behavioral 
studies {e.g., Hintzman & Curran, 1994; 
Rotella, Macmillan, Reeder, & Wong, 2005), 
and a wide variety of cognitive neuroscience 
techniques {Fortin, Agster, & Eichenbaum, 
2002; Rugg & Curran, 2007; Staresina, 
Fell Dunn. Axmacher, & Henson, 20 13; 
Wilding, Doyle, & Rugg, 1995; Wtxted & 
Squire, 2011). A major problem leading to 
this debate has been difficulty in extracting 
satisfactory measures of these two putative la­
tent processes using observable data. Although 
signal detection approaches have been popular 
{Wixted, 2007; Yonelinas & Parks, 2007) in 
solving this problem, signal detection is by no 
means definitive {Malmberg, 2002; Province & 
Rouder, 2012). 
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to episodic memory. This is extremely important 
because the experimenter must have control over 
the stimuli the participant has experienced in 
order to evaluate the success or failure of memory 
retrieval. 

In the laboratory, the study of episodic memory 
has been dominated by two tasks: single item 
recognition and recall. In both recognition and 
recall tasks, subjects are typically presented with a 
series of stimuli-a list-and then tested on their 
memory for that experience later. In recognition, 
participants discriminate between studied targets 
and unstudied foils. In recall, participants are 
asked to generate some member of the stimulus 
set. There exist successful process models for both 
individual tasks but no single model that captures 
a wide range of theoretically and empirically 
important data in both tasks. In part, this is 
because a number of variables differentially affect 
performance in these two tasks, and in part because 
the methodological details in the two domains 
often vary in ways that preclude direct comparison. 
The division of this chapter into recognition and 
recall sections reflects the fact that efforts to 
provide a common modeling framework have not 
been successful thus far. This is a major gap in 
our understanding-a unified model of episodic 
memory that provides a quantitative description 
of the data from the various paradigms would be 
much preferable. In this chapter, we first present 
an overview of the important data and models in 
each area. 

Models of Recognition Memory 
Recognition memory tests are among the most 

widely used experimental paradigms for the study 
of episodic memory. Here, a to-be-remembered 
event is created, typically in the form of a list 
of individually presented items (words, pictures, 
etc). After a delay ranging from a few seconds to 
7 or more days, memory is tested by intermixing 
the studied items (from the to-be-remembered list) 
along with foils that did not occur during the study 
episode. In forced choice recognition, a target item 
is presented alongside a foil or foils and participants 
are instructed to select the target. In single item 
recognition, test items are presented one by one and 
the participant is asked to endorse studied items and 
reject foil items. Multiple measures describe perfor­
mance: a hit is correctly endorsing a studied item, a 
correct rejection is correctly identifYing a foil, a false 
alarm is incorrectly endorsing a foil as having been 

studied, and a miss is incorrectly rejecting a studied 
item. Although measuring accuracy in recognition 
memory is itself an active topic of research, in 
general, the larger the difference between the hit 
rate (proportion of hits to old probes) and the false 
alarm rate (the proportion of false alarms to new 
probes), the more accurate is episodic memory. In 
forced choice, the measurement of performance 
is simply percent correct. Based on these and 
other measures, such as the time for providing 
a response or the confidence associated with the 
response, a number of detailed mathematical 
models have been developed to explain episodic 
memory. 

Global matching models 
The global matching models were successful for 

decades (Gillund & Shiffrin, 1984; Hintzman, 
1984; Humphreys, Bain, & Pike, 1989; Murdock, 
1982). The premise of these models was that the 
search of episodic memory included a comparison 
to a relevant set of items and the memory decision 
was based on the overall or global match between 
the probe and the set to which it was compared. 

THE MATCHED FILTER MODEL 

The basic idea of global matching models is 
concisely illustrated by Anderson's matched filter 
model (Anderson, 1973). Let the list be composed 
of N unique items represented as vectors fi, where 
the subscript denotes which of the N vectors is 
referred to. Let the vectors be randomly chosen 
Gaussian deviates such that 

E [r.Tf·] - s: .. t '} -Ulj (I) 

(where Jij = 1 if i = j and Jij = 0 otherwise) and the 
similarity of the vectors to have variance given by 

Vtlr [ fi T ~ J = a 2 . 

We will treat a as a free parameter but, in general, 
it will be specfied by the distribution of the features 
of fi. Now, in the matched filter model, the list is 
represented simply as the sum of the list items. At 
each time step, the sum mi is updated according to 

such that at the end of the list 

N 

mn= Lfi. 
i=l 

(2) 

(3) 

To model recognition, we take the vector corre­
sponding to a probe and match it against the list. 

Denoting the vector corresponding to the probe 
stimulus as fp we have 

(4) 

Notice that this decision variable has different 
distributions depending on whether the probe was 
on the list. If the probe is old, then fp should match 
one of the list items, resulting in 

E [Dp] = { ~ old 
(5) new 

Moreover, the variance of Dp is a function of the 
length of the list 

(6) 

The matched filter model is an example of global 
matching model. It is a matching model because 
the similarity of the probe stimulus to the contents 
of memory is calculated and drives the decision 
process. It is a global matching model because 
the match is calculated not only to information 
stored about the probe stimulus during study; 
rather the match from other study items also 
contributes to the decision. This concept is perhaps 
best understood in contrast to direct access models 
(Dennis & Humphreys, 2001; Glanzer & Adams, 
1990) that posit a direct comparison of the test item 
to its corresponding memory trace. 

In global matching models, errors in memory 
result from similarity between the test item and 
memory traces with similar features. More formally, 
the probability that Dp is greater than some 
criterion is higher for old probes than for new 
probes; for a fixed criterion c, P ( Dp > ciold) > 
P(Dp > clnew). However, in order to correspond 
to performance in the task (which is typically 
far from perfect) the criterion (and the variances) 
must be chosen such that the match from some 
new probes exceeds the criterion. According to the 
matched filter model, and global matching models 
more generally, this happens because a particular 
new probe happens to match well with the study 
list. 

We can generate several other predictions from 
global matching models from these expressions as 
well. First, Eq. 6 tells us that the the discriminability 
of the decision goes down with a and with the 
length of the list N. If the vectors are chosen such 
that the similarity is a normal deviate, then the 
discriminability between the old and the new distri­
butions is d' = Jr . This makes a straightforward 

..;Na 
experimental prediction-that accuracy should go 
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down as the length of the study list increases. 
This finding is typically observed in recognition 
memory experiments (Criss & Shiffrin, 2004; Ohrt 
& Gronlund, 1999; Shiffrin, Huber, & Marinelli, 

1995 but see (21)). 

THE DEMISE OF GLOBAL MATCHING MODELS 

Two observations contributed to the demise 
of the global matching models for recognition 
memory: the generality of the mirror effect and the 
null list strength effect. The mirror effect refers to 
the finding that when the hit rate is higher for a 
particular experimental variable, the false alarm rate 
is lower. This is a challenge for global matching 
models because the strength of target items appears 
to leapfrog the foil items. Suppose we perform an 
experiment in which we observe some hit rate and 
false alarm rate. Now, we change the experiment 
such that each studied item is presented five times 
rather than just once. Now, the mean of Dp for the 
old probes will be 5 rather than 1 but the mean 
of Dp for the new probes will still be zero. The 
variance of the distributions should also increase, to 
5N a 2 . If the criterion c is fixed across experiments, 
we would expect the hit rate, P(Dp > ciold) to 

be higher for the list with the repeated stimuli. 
However, the false alarm rate should also increase, 
in contrast to the experimental results. In order to 

account for the mirror effect in the context of the 
matched filter model, we would have to assume 
that the criterion, C, changes across experiments, 
which is akin to unprincipled curve-fitting. The 
mirror effect is quite general and is observed for 
a wide variety of experimental variables including 
repetition, changes in presentation time, and word 
frequency (e.g., Glanzer & Adams, 1985, 1990). 
Most global matching models did not attempt to 

account for the mirror effect at all and those that did 
relied on a changing criterion (Gillund & Shiffrin, 
1984), which is largely inconsistent with the 
empirical data (e.g., Glanzer, Adams, Iverson, & 

Kim, 1993). 

The null list strength effect posed a more 
fundamental challenge to global matching models. 
The null list strength effect is the finding that 
the strength of other study items does not affect 
recognition memory accuracy (Shiffrin, Ratcliff, 
Clark, 1990; Ratcliff, Clark & Shiffrin, 1990). To 
make this more concrete, consider two experiments. 
In one experiment, as before, we present all the 
items five times. We would expect accuracy to be 
much higher in this pure strong condition relative 
to the pure weak condition, where all the items are 
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presented only once. But now consider a mixed list 
experiment in which half the list items are presented 
five times and half are presented only once. We 
refer to probes presented five times during study 
in the mixed list as mixed-strong probes and the 
probes presented only once as mixed-weak probes. 
Note that the mean of Dp for the pure-strong and 
mixed-strong probes should be identical. However, 
the variance should not be the same. The mixed­
strong probes should be subject to less noise from 
the weak items in the mixed list and should thus 
have higher accuracy than the pure-strong probes. 
Following similar logic, we would expect accuracy 
to be lower for the mixed-weak probes than for 
the pure-weak probes due to additional interference 
from the strong items on the study list. In contrast 
to this very strong prediction, this pattern of results 
does not hold (Ratcliff et al., 1990; Shiffrin et al., 
1990), reflecting a fundamental problem for global 

matching models. 

The Retrieving Effectively from Memory 
(REM) Model 

The pervasiveness of the mirror effect and the 
discovery of the null list strength effect created 
a paradigm shift wherein a new set of models 
incorporating Bayesian principles were developed to 
account for recognition memory. 

The REM model (Shiffrin & Steyvers, 1997) is 
the most thoroughly explored of these approaches 
and we will focus on it extensively here. As in 
the global matching models, a probe is compared 
to each of the traces in memory. There are two 
key insights that allow REM to overcome the 
weaknesses of the global matching models. First, 
the comparison between the probe and the contents 
of memory incorporates both positive evidence of 
a match but also negative evidence for nonmatch. 
That is, rather than simply the absence of evidence, 
REM can incorporate positive evidence for absence. 
This is a powerful assumption. As a stimulus is 
studied more extensively, it means that this stimulus 
can provide both more positive evidence that the 
trace matches an old probe, but also more negative 
evidence that it doesn't match a new probe. This 
provides a mechanism for altering the new item 
distribution rather than assuming that encoding is 
restricted to altering the target distribution. Second, 
the decision rule takes into account the nature of the 
environment and expected memory evidence based 

on that prior knowledge. 
REM is a Bayesian model with the core assump­

tion that processes underlying memory are optimal 

given noisy information on which to base a deci­
sion. There are two types of memory traces in REM: 
lexical-semantic and episodic. Lexical-semantic 
traces are accumulated across the lifespan and are 
thus complete, accurate, and de-contextualized 
relative to episodic traces. Episodic traces are 
formed during a given episode and are updated with 
item, context, and sometimes associative features 
during each presentation in a given context. REM 
is a simulation model wherein a set of episodic 
and lexical-semantic traces are generated for each 
simulated subject as described next. 

REPRESENTATION 

A memory trace consists of multiple types 
of information. Item features represent a broad 
range of information about the stimulus including 
the meaning of the stimulus and orthographic­
phonological units. Context represents the internal 
and external environment at the time of encoding. 
Associative features are sometimes generated and 
represent information relating multiple items (e.g., 
a stimulus-specific association formed during or 
prior to the experiment). All features are drawn 
from a geometric distribution with parameter g. 
The probability that a feature takes the value v is 

( )
v-1 

P(v) = g 1-g . (7) 

A geometric distribution assures that some features 
will be relatively common and others will be 
relatively rare. Evidence provided by a matching 
feature is a function of the base rate of that feature: 
matching a common feature provides less evidence 
than matching a rare feature. 

STORAGE 

During each experience with a stimulus, the 
lexical-semantic trace for a stimulus is retrieved 
from memory and updated with the current 
context features. In a typical recognition memory 
experiment the lexical-semantic traces are used 
solely for the purposes of generating and testing 
episodic traces. Therefore, the theoretical principle 
of updating lexical-semantic traces with current 
context is typically not implemented in a simulation 
(c.f., Schooler, Shiffrin, & Raaijmakers, 2001). An 
episodic memory trace is formed by storing each 
lexical-semantic feature and the context feature with 
some probability(~) per unit of time (t). Given that 
a feature is stored, the correct value is stored with 
some probability (c). Otherwise, a random value 
from the geometric distribution is stored. Features 
that are not stored during encoding are denoted 

by a zero indicating a lack of information. Thus, 
episodic memory is incomplete (i.e., some features 
are not stored), prone to error (i.e., an incorrect 
feature value may be stored), and context-bound 
(i.e., contains a set of features representing the 
context). 

Study of a pair results in the concatenation of the 
two sets of item features and shared context features. 
Depending on the goals at encoding, associative 
features that capture relationships between the two 
stimuli may also be encoded in the vector (e.g., 
Criss & Shiffrin, 2004, 2005). Processes at retrieval 
are necessarily different for different tasks as they 
depend on the information provided as a cue 
and the required output. Next we only consider 
recognition memory, but note that REM has 
been applied to multiple memory tasks including 
judgments of frequency (Malmberg, Holden, & 
Shiffrin, 2004), free recall (Malmberg & Shiffrin, 
2005), cued recall (Diller, Nobel, & Shiffrin, 
2001), and associative recognition (Criss & 
Shiffrin, 2004, 2005). 

RETRIEVAL 

According to REM, there are an immense 
number of traces that have been laid down over 
an extremely long time. In order to restrict the 
comparison to the relevant event, reinstated context 
features identifying the context to be searched 
are used to define the activated set. In a typical 
experiment with a single study list, this step simply 
limits the comparisons of the test cue to the 
study list and is often implemented by assumption 
for simplicity, which we assume here. The basis 
for a memory decision in REM is the likelihood 
computation. The likelihood reflects evidence in 
favor of the test cue as the ratio of the probability 
that the cue matches a trace in memory given 
the data compared to the probability that the cue 
does not match an item in memory given the 
data. Here, data refer to the match between the 
cue and the contents of the activated subset of 
episodic memory. The item features from test cue 
j are retrieved from its lexical-semantic trace and 
compared to each item in the activated set, indexed 
by i. A likelihood ratio, indicating how well the 
test cue j matches memory trace i is computed 
usmg 

Aij = (1- c)nq IJ c+ (1- c)gsys 1 -v~~s CXJ [ ( )v-llnm 

v=l gsys (1- gsys) 
(8) 
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The gsys parameter is the long-run base rate. This 
is a fixed value, estimated by the system based on 
experience. This base rate value may differ from 
the g values in Eq. 7, which gives the value of the 
g parameter for the stimulus itself. The number 
of nonzero features that mismatch is nq and the 
number of features that match and have the v is nm. 
Missing features (value of zero) are ignored. Note 
that the amount of evidence provided by a matching 
feature depends on the feature value. This is one 
way in which prior knowledge contributes to the 
decision. Specifically, in a geometric distribution, 
low values are common and, therefore are likely 
to match by chance. These values provide little 
evidence when they match. In contrast, large values 
are uncommon and, therefore unlikely to march 
by chance, providing greater evidence when they 
match. Thus, knowledge about the statistics of the 
environment (i.e., rarity of features, estimated by 
gsvJ learned over the course of life contributes to 
the evidence of match between a test cue and the 
contents of each memory trace. For single item 
recognition the decision that test cue j was present 
during the relevant context is based on the average 
of the likelihood ratios. If the average exceeds a 
criterion, the item is endorsed as from the list, 
otherwise it is rejected. 

WOrd Frequency and Null List Strength 
Effects in REM 

REM can provide an account of the mirror 
effect based on properties of the words themselves, 
such as word frequency. The probability of a given 
feature value {g) and the expectation of feature 
values {gsy5 ) are both specified in REM. REM 
has used the g parameter to model the effects 
of normative word frequency. Specifically, low 
frequency words (LF) are assumed to have more 
uncommon features (i.e., a lower value of g is used 
to generate the stimuli). In contrast, high frequency 
(HF) words have relatively common features. The 
common features of HF words tend to match other 
features of memory traces by chance increasing the 
false alarm rate. Additionally, the likelihood ratio 
includes prior information by taking into account 
the base rate of features {gsys) such that matching 
unexpected features contribute more evidence in 
favor of endorsing the test, increasing the hit rate 
for LF words. Together, the stimulus represen­
tation {g) and prior expectations {gsys) generate 
a word frequency mirror effect, consistent with 
empirical data. 

BASIC COGNITIVE SKILLS 

The null list strength account in REM is 
based on differentiation. The Subjective Likelihood 
Model (SLiM) of McClelland and Chappell (1998) 
shares the mechanism of differentiation and for 
that reason also predicts a null list strength effect 
for recognition. Differentiation refers to the idea 
that the more that is known about an item, 
the less confusable that item is with any other 
randomly chosen item. Obvious applications are 
a bird expert or a radiologist, who have such 
knowledge in their area of expertise that they can 
quickly and accurately identifY a Rusty Blackbird 
or a cancerous tumor, whereas a novice simply 
sees a bird or a blurry grayscale image. In episodic 
memory, an item becomes differentiated by being 
well practiced within a specific contextual episode, 
for example by repetition in an experiment. Within 
the differentiation models, an episodic memory 
trace is updated during repetition, which causes 
the memory trace to be more accurate and more 
complete. Note that updating was a departure from 
the standard assumption of storing additional exem­
plars or additional memory traces with repetition 
(e.g., Hintzman, 1986). In REM, differentiation 
is implemented by assuming that if an item is 
recognized as having been previously experienced 
in a given context, then the best matching trace 
is updated such that any missing (zero valued) 
features have the potential of being replaced in 
accordance with the encoding mechanism described 
earlier. If an item is not recognized as a repetition, 
then a new memory trace is stored. In the original 
REM model, updating only occurred during study 
for simplicity. However, more recent applications 
incorporate updating and encoding at test (Criss, 
Malmberg, & Shiffrin, 2010). 

When a memory trace is stored with higher 
quality, that is when more features are stored, not 
only is it a better match to a later comparison 
with the lexical-semantic trace from which it was 
generated, but it is also a poorer match to other 
test items. In Eq. 8, note that the matching 
and mismatching features contribute to the overall 
evidence in favor of the test item. As the total 
number of stored features in a given memory trace 
increases, due to additional encoding, so too does 
the total number of features matching the target 
trace. Critically, the total number of mismatching 
features for any item other than the corresponding 
target trace also increases. The net result is that 
although a strengthened target item matches better 
and will be better remembered, it is not at the cost 
of the other studied items. Differentiation models 

correctly predict that recognition memory is not 
harmed by increasing the strength of the other items 
on the study list. In fact, in some cases, the models 
predict a small negative list strength effect such that, 
for a given item, memory may slightly improve as 
the strength of other studied items increases (see 
Shiffrin et al., 1990). 

In summary the differentiation models were 
developed to address shortcomings of the global 
matching models, in particular their failure to 
capture the robust empirical findings of the word 
frequency (WF) mirror effect and the null-list 
strength effect. In REM, the WF effect is due 
to the assumed distribution of features along with 
a Bayesian decision rule that gives more weight 
to unexpected matches or alternatively downplays 
expected matches. The null-list strength effect is 
due to differentiation of well-learned items caused 
by updating memory traces. 

The Empirical Consequences of Updating 
The updating mechanism in REM was necessary 

to produce differentiation and to account for 
empirical data. Auspiciously, this same mechanism 
makes critical a priori predictions that appeared in 
the literature after the model was conceived. First, 
updating memory traces during the encoding of 
test items results in output interference. Output 
interference ( 0 I) is the finding that memory accuracy 
decreases over the course of testing (Murdock & 
Anderson, 1975; Roediger & Schmidt, 1980; 
Tulving & Arbuckle, 1963, 1966; Wickens, Born, 
& Allen, 1963). Output interference is not a 
new finding, but a detailed understanding of the 
manifestation ofOI in recognition memory is (Criss, 
Malmberg, & Shiffrin, 2011; Malmberg, Criss, 
Gangwani, & Shiffrin, 2012). Figure 8.1 shows 
a typical pattern of 01 in recognition testing (left 
panel) alongwith predictions from REM. The middle 
panel shows predictions for REM where remembered 
items cause the best matching episodic trace to be 
updated, as described earlier. The right panel shows 
predictions for a version of REM where updating 
does not occur; instead, a new trace is added to 
memory for each test item. Both the predictions of 
REM with updating and the data show a dramatic 
decrease in the rate of endorsing target items as old 
as a function of test position and the nearly flat 
function for foils. In contrast, the multitrace version 
of REM in which additional traces are stored with 
each test item predicts a shallow decrease in the 
hit rate along with an increase in the false-alarm 

rate. Both implementations ofRE!\1 predict output 
interference in the sense that overall accuracy (e.g., d­
prime) decreases across test position. However, only 
the updating model predicts the precise pattern of 
observed data. 

A second prediction that follows directly from 
the differentiation mechanism is a higher hit rate 
and lower false alarm rate following a strongly 
encoded list compared to a weakly encoded list. 
This finding is called the strength-based mirror 
effect (SBME) and has been widely replicated (Cary 
& Reder, 2003; Criss, 2006, 2009, 2010; Glanzer 
& Adams, 1985; Starns, White, & Ratcliff, 2010; 
Stretch & Wixted, 1998). The W7F mirror effect 
is related to the nature of the stimuli, whereas the 
SBME is related to the encoding conditions. Both 
findings co-occur (Criss, 201 0; Stretch & Wixted, 
1998) and despite the shared label of mirror effect, 
they result from entirely different mechanisms in 
REM. Increasing the strength with which a study 
list is encoded via levels of processing, repetition, or 
study time increases the number of stored features 
and produces a distribution of A that is higher 
for strongly than weakly encoded targets. The 
same fact-that strongly encoded memory traces 
contain more information-produces a distribution 
of lower A. for foil items. Foils match a strongly 
encoded memory trace less well than a weakly 
encoded memory trace. Thus, a list containing 
all strongly encoded targets will match any given 
foil poorly, reducing the false alarm rate. Not 
only are the HR and FAR patterns that make 
up the SBME well predicted by REM, but REM 
makes additional specific predictions that have been 
confirmed with behavioral experiments (see Criss 
& Koop, in press for a review). For one, the 
actual distribution of estimated memory strength 
follows the pattern predicted by REM (Criss, 
2009). Further, the interaction between target-foil 
similarity and encoding strength presents just as 
predicted by REM (Criss, 2006; Criss, Aue, & 
Kilic, 20 14). If one conceives of the A values as 
the driving force behind a random walk or diffusion 
model, then the rate at which the walk reaches a 
boundary is consistent with REM, that is, targets 
and foils following a strongly encoded list have 
a steeper approach (e.g., larger drift rate) to the 
decision bound (Criss, 2010; Criss, Wheeler, & 
McClelland, 2013). 

In summary, the global matching models were 
found to be inadequate on the basis of several 
findings, critically, the WF mirror effect and 
null-list strength effect. REM was developed to 
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Fig. 8.1 Panel A shows data (Koop, Criss, & in press) that is representative of output interference. The panel gives the 
probability of old probes and new probes (foils) for several test blocks. The hit rate is P(OLD) for targets; the 
false-alarm rate is P(OLD) for foils. data reveal a steep decline in the hit rate and flat false alarms across test position. Panel B 
shows the standard REM model where remembered items cause updating of an episodic memory trace. Updating produces patterns 
of data consistent with findings. Panel C shows a version of REM where each test item causes the storage of a new memory 
trace (i.e., no updating). Such a model predicts a shallow decrease in the hit rate and increase in the false alarm rate, inconsistent with 
observed data. 

account for these data and others. Two key features 
of REM are updating a single context-bound 
episodic trace and a Bayesian decision rule that 
takes into account positive and negative evidence 
from the stimulus as well as expectations based 
on the environment. These properties not only 
accounted for the problematic data but also lead 
to specific and fortuitous predictions. Differen­
tiation, the same mechanism that was required 
to predict the data that lead to the demise of 
a whole class of models, predicted the observed 
pattern of output interference and strength-based 
mirror effects. 

An Alternative Idea: Context-Noise Models 
Context-noise models (Dennis & Humphreys, 

2001) were also developed to account for data prob­
lematic for the global matching models. However, 
they took a very different approach. Context-noise 
models assume that memory evidence is based on 
the similarity between the test context and the 
previous contexts in which the test item was en­
countered. There is no comparison between the test 
item and any other studied item, in fact no other 
items from episodic memory enter the decision pro­
cess. Briefly, the model works as follows. Each time 
a word is encoded, the current context is bound to 
the word. During test, the item causes retrieval of 
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its prior contexts. Those contexts are compared to 
the context in question, the test context in a typical 
recognition experiment. The recognition decision is 
made based on how well the retrieved contexts of 
the test item match the test context. It should be 
clear that context information is the only factor that 
contributes to memory evidence and, thus, such 
models predict no effects of list composition per 
se. Neither the number nor strength of the other 
studied items affect the decision because those items 
are never compared to the test item, thus the model 
easily predicts a null list strength effect. The "WF 
mirror effect is predicted on the assumption that 
common words have more prior contexts that in­
terfere with the ability to isolate the tested context. 
Although the context noise models are limited-for 
example, they only apply to recognition and must 
generate post-hoc explanations for many findings 
including output interference and the SBME­
they certainly advanced the field by making context 
a touchstone for models of recognition. Unlike 
models of recall that emphasize context, models 
of recognition have largely neglected context. The 
item-context-noise debate sparked by the intro­
duction of the Dennis & Humphreys model of 
has brought to the forefront the fact that context 
must be taken seriously in recognition models 
but also raised questions about the nature of 
context. 

Models of Episodic Recall 
In recall tasks, subjects must report their 

memory for an event by producing a stimulus. 
Recall tasks most commonly use words as stimuli. 
In cued subjects are given a probe stimulus 
as a cue to retrieve a particular word from the list. 
Most commonly, pairs of words are studied, with 
one member of the pair serving as a cue for recall 
of the other (but see Phillips, Shiffrin, & Atkinson, 
1967; Nelson, McEvoy, & Schreiber, 1990; Tehan 
& Humphreys, 1996; for other possibiities). In 
free recall, subjects are presented with a list of 
words, typically one at a time and then asked to 
recall the words in the order they come to mind. 
In serial recall, subjects are asked to produce the 
stimuli in order, typically starting at the beginning 
of the list. Although there is a well-developed 
literature modeling serial recall, the serial recall 
task is most commonly described as a function 
of working memory rather than as a function of 
episodic memory, 1 and we will not discuss it here. 

The fundamental question in episodic recall is to 
determine what constitutes the cue. In cued recall, 
this might seem like an obvious question. Given 
the pair DOG-QUEEN the subject is presented DOG 

as a cue at test and correctly recalls QUEEN. Is it 
not sufficient to understand this as a simple, almost 
Pavlovian, association between some distributed 
representation of the word DOG and the word 
QUEEN? This is not sufficient. If the subject is 
asked instead to recall the first word that comes 
to mind when hearing the word DOG it is likely 
the subject would recall CAT. If asked to recall a 
word that rhymes with dog the subject would likely 
recall LOG. If asked to remember a specific event 
from their life that involved a dog (or the word 
DOG) it is unlikely that the subject would recall 
QUEEN. All these tasks take the same nominal cue 
but result in very different responses. From this we 
conclude that the cue stimulus itself is not enough 
to account for the subjects' responses. In free recall 
the problem is even more acute; in free recall there is 
no external cue whatsoever. Free recall must proceed 
solely on the basis of some set of internal cues. 
Several concepts-fixed-list context, variable con­
text, short-term memory, and temporally varying 
context-have been introduced to detailed models 
of recall tasks to attempt to solve these problems. 

Cued recall 
In cued recall, subjects are presented with 

pairs of stimuli, such as ABSENCE-HOLLOW, 

PUPIL-RIVER, and so forth. At test, the subject 

Is one of the stimuli, such as ABSENCE and 
asked to produce the corresponding member of 
the pair, i.e., say (or write) HOLLOW. One way 
ro approach cued recall is to form an association 
between the stimuli composing a pair. We will 
see that this assumption is ultimately limited for 
recall more broadly, but illustrates several important 
properties of models of recall. For that reason, 
we will spend some time examining an extremely 
simple model of association in memory. 

SIMPLE LINEAR ASSOCIATION 

In the matched filter model we constructed a 
memory vector that was the sum of the vectors 
corresponding to the list items. In a linear associ­
ator, we again form a sum, but now of a set of 
outer product matrices. Each matrix provides the 
outer product of the first members of a pair with 
the second members of a pair. These associations 
can be understood as changing the synaptic weights 
between two vector spaces according to a Hebbian 
rule. Such associations between distinct items are 
referred to as heteroassociative. 

Here we follow the heteroassociative model of 
]. A. Anderson, Silverstein, Ritz, and Jones (1977). 
Let us refer to vector corresponding to the first 
member of the ith studied pair as fi and the 
second member as gi. Now, the matrix storing 
the associations between each stimulus and each 
response can be described by 

Mi = Mi-1 +figiT· (9) 

To model the association, we can probe the matrix 
with a probe stimulus, Mgp. Here we find this to be 

Migp = Lfi (giT gp). (10) 

That is, the output is a combination of the vector 
for each first member fi weighted by the to 
which the paired stimulus gi stimulus matches the 
probe vector. Equations 9 and 10 can be understood 
as describing a simple neural network connecting 
f and g, with M understood as a simple Hebbian 
matrix describing the connections between them 
(see Figure 8.2). 

In recall tasks, subjects report one word at a 
time, rather than a mixture of words. This can be 
reconciled with a deblurring mechanism in which 
one takes an ambiguous stimulus and perceives 
one of several possibilities. This is somewhat 
analogous to the problem of perception in which 
one identifies a particular stimulus from a blurry 
input. One can imagine a number of physical 
processes that could be used to accomplish this 
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Fig. 8.2 Schematic of a neural network interpretation of Eq. 9. 
Two sets of "neurons," f and g are connected by a weight matrix 
M. As each pair is presented, the values of the elements in f 
and g are set to the values corresponding to the stimulus in that 
pair. The connections between an individual element in g and an 
individual element in fare strengthened according to the product 
of those two elements, that is, the corresponding element of the 
outer product of the two patterns. 

deblurring (e.g., ]. A. Anderson et al., 1977; 
Sederberg, Howard, & Kahana, 2008), but in 
many applications, researchers simply assume that 
the probability of recalling a particular word is some 
phenomenological function of its activation relative 
to the activation of competing words (e.g., Howard 
& Kahana, 2002a) or a sampling and recovery 
process (e.g., Raaijmakers & Shiffrin, 1980). 

A series of models can be developed that can 
be thought of as variations on the basic theme 
illustrated by Eq. 10. These models differ in the 
associative mechanism but are similar in that they 
store the associations between each of the members 
of the pairs and provide a noisy output when given a 
probe. TODAM utilizes a convolution/correlation 
associative mechanism rather than the outer prod­
uct (e.g., Murdock 1982). The matrix model 
(Humphreys et al., 1989) utilizes a triple association 
between the two members of the pair and a fixed­
list context vector to form a three tensor that can be 
probed with the conjunction of a probe item and a 
test context. 

Free recall 
Free recall raises two computational problems 

that are probably central to the question of episodic 
memory. First, how do subjects initiate recall in 
the absence of a particular cue? Second, how do 
those cues change across the unfolding process of 
retrieval? Models of free recall have not focused on 
differences in associative mechanisms, nor detailed 
assumptions about how items are represented, but 
on representations that are used to initiate recall and 
how those representations change across retrieval 
attempts. These two problems can be concisely 
summarized by two classes of empirically observable 
phenomena: the probability that subjects initiate 
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recall with a particular word and the probability 
of transitions between stimuli after recall has been 
initiated. 

EMPIRICAL PROPERTIES OF RECALL INITIATION IN 

FREE RECALL 

The finding that subjects can direct their recall to 
a specific region of time has also had a large effect 
on hypotheses about the cue used to initiate free 
recall. Shiffrin (1970) gave subjects a series oflists of 
varying lengths for free recall. However, rather than 
having subjects recall the most recent list, he had 
subjects direct their recall to the list before the most 
recent list. Remarkably, the probability of recall 
depended on the length of the target list rather than 
the length of the intervening list. This suggested a 
representation of the list per se that was used to focus 
the subjects' retrieval attempts.2 

But the most dramatic effect in the initiation 
of free recall is the recency effect manifest in the 
probability of first recall. The probability of first 
recall gives the probability that the first word the 
subject recalls came from each of the positions 
within the list. When the test is immediate, this 
measure shows a dramatic advantage for the last 
items in the list (Figure 8.3a). This, combined 
with the fact that the recency effect is reduced 
when a delay intervenes between presentation of the 
last word and the test (Glanzer & Cunitz, 1966; 
Postman & Phillips, 1965) led many researchers 
to attribute the recency effect in immediate free 
recall to the presence of a short-term memory buffer 
(e.g., Atkinson & Shiffrin, 1968). However, the 
recency effect measured in the probability of first 
recall is present even when the ·rime between the 
last item in the list and the test is much longer. 
Similarly, when subjects make errors in free recall by 
recalling a word from a previous list, the intrusions 
are more likely for recent lists (Zaromb et al., 
2006). The debate among researchers modeling 
free recall in the last several years has focused on 
whether these longer-term recency effects depend 
on a different memory store than the short-term 
effects (Davelaar, Goshen-Gottstein, Ashkenazi, 
Haarmann, & Usher, 2005; Lehman & Malmberg, 
2012) or if recency effects across time scales reflect 
a common retrieval mechanism (Sedcrberg et al., 
2008; Shankar & Howard, 2012). 

CONTEXT AS A CUE FOR RECALL 

To solve the problem of mmanng recall 
researchers have appealed to a representation of 
"context," some information that is not identical to 
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Fig. 8.3 The recency effect in recall initiation across time scales. The probability of first recall gives the probability that the first word 
the subject free recalls came from each position within the list. a. In immediate free recall, the test comes immediately after presentation 
of the last list item. A dramatic recency effect results. In delayed free recall, a distractor task intervenes after presentation of the last 
word in the list. The recency effect is sharply attenuated. In continuous distractor free recall, a distractor is presented after the last item, 
but also between presentation of each item in the list. The recency effect in the probability of first recall recovers. Here the distractor 
interval was approximately 16 s. After Howard & Kahana ( 1999). b. Subjects studied and recalled 48 lists of words. At the end of the 
experiment, they recalled all the words they could remember from all lists. Probability of first recall is shown as a function of the list 
the word came from. Here the recency effect extends over a few hundred seconds. After Howard, Youker, & Venkatadass (2008). 
a. Mter Howard & Kahana (1999), @2008, Elsevier; b. Mter Howard, Youker, & Venkatadass (2008),with kind permission from Springer Science and 

Business Media. 

the stimuli composing the list but that nonetheless 
enables the subject to focus their memory search 
on a subset of the stimuli that could potentially 
be generated. Context can function as a cue for 
retrieval of items from the appropriate list if it is 
associated to the list stimuli during learning. We can 
think of a straightforward extension of Eq. 9: 

(11) 

where Ci the state of the context vector at time step 
i. The "context" available at the time of test can be 
used as a probe for recall from memory (Figure 8.4). 
In much the same way that words in memory were 
activated to the extent that they were paired with 
the probe word in Eq. 10, the words in memory 
will be activated to the extent that the cue context 
resembles the state of context available when they 
were encoded. 

Mic= Lfi (CiTe), 
i 

(12) 

where c is the context available at the time of 
test. We can see the power of proposing a context 
representation from Eq. 12: each studied item fi is 
activated to the extent that its encoding context Ci 
overlaps with the probe context. 

Obviously, the choice of how context varies has 
a tremendous effect on the behavioral model that 

results. One choice is to have the state of context be 
constant within a list but completely different from 
the state of context that obtains when one studies 
the next list. Models that exploit a fixed list context 
have been successful in describing many detailed 
aspects of free recall performance (Raaijmakers 
& Shiffrin, 1980, 1981). If there is a binary 
difference between the context of each list, then it 
is not possible to describe recency effects across lists 
(Glenberg, Bradley, Stevenson, Kraus, Tkachuk, & 
Gretz, 1980; Howard et al., 2008; Zaromb et al., 
2006). Similarly, if the context is constant within 
a list, then fixed list context cannot be utilized to 
account for recency effects within the list. 

Another choice is to have context change 
gradually across lists Q. R. Anderson & Bower, 
1972), or across time per se. Following Estes (1955), 
Mensink and Raaijmakers (1988) introduced a 
model of interference effects in paired associate 
learning where the state of context gradaully 
changed over intervals of time. The state of context 
at test is the cue for retrieval of words from the list. 
If the state changes gradually during presentation of 
the list items, then the state at the time of test will 
be a better cue for words from the end of the list 
than for words presented earlier. As a consequence, 
this produces a recency effect. This approach has 
been applied to describing the recency effect in free 
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Fig. 8.4 Context as an explanatory concept. a. Stimuli fare associated to states of context c. Compare to Figure 8.2, Eqs. 9, 11. b. In 
contextual variability models, context changes gradually from moment to moment by integrating a source of external noise. See Eq. 13. 
c. In retrieved context models, the changes in context from moment to moment are caused by the input stimuli themselves. Repeating 
an item can also cause the recovery of a previous state of temporal context. See Eqs. 15, 16. 

recall both within and across lists (Davelaar et al., 
2005; Howard & Kahana, 1999; Sirotin, Kimball, 
& Kahana, 2005). If one can arrange for the state 
of context to change gradually over long periods of 
time, recency effects can be observed over similarly 
long periods of time. 

Murdock ( 1997) used a particularly tractable 
model of variable context that illustrates this idea. 
At time step i, the context representation 1s 
updated as 

where 11 i is a vector of random features chosen at 
time step i (Figure 8.4b). 

The noise vectors are chosen such that the 
expectation value of the inner product of any two 
vectors is zero and the expectation value of the inner 
product of a noise vector with itself is 1. Now, it 
is easy to verify that the expectation of the inner 
product of states of context falls off exponentially: 

E [CiT Cj] = (14) 

Here we can see that the parameter p controls the 
rate at which context drifts in this formulation. As a 
consequence, Eq. 13, coupled with Eq. 12 results in 
an exponentially decaying activation for list items. 

EMPIRICAL PROPERTIES OF RECALL TRANSITIONS 

IN FREE RECALL 

After the first recall is generated, transitions from 
one word to the next also show lawful properties. 
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Broadly speaking, recall transitions show sensitivity 
both to the study context of the presented words 
as well as similarities between the words themselves. 
For instance, given that the subject has just recalled 
some word from the list, the next word recalled is 
more likely to be from a nearby position within 
the list than from a distant position within the 
list, showing a sensitivity to relationships induced 
by the study context. Similarly, the subject is 
more likely to recall a word from the list that 
is semantically related to the just-recalled word 
than to recall an unrelated word from the list, 
showing a sensitivity to the properties of the words 
themselves. 

The tendency to recall words from nearby 
serial positions in sequence is referred to as the 
contiguity effect (Kahana, 1996; Sederberg, Miller, 
Howard, & Kahana, 2010). The contiguity effect 
is manifest not only in free recall, but in a 
wide variety of other episodic memory tasks as 
well (see Kahana, Howard, & Polyn, 2008 for 
a review). Like the recency effect, the contiguity 
effect is also manifest across time scales as well 
(Howard & Kahana, 1999; Howard et al., 2008; 
Kilis:, Criss, & Howard, 2013). In addition to the 
sensitivity to the temporal context in which words 
are studied, subjects' recall transitions also reflect 
the spatial context in which words were studied. 
Miller, Lazarus, Polyn, and Kahana (2013) had 
subjects study a list of objects while traveling on a 
controlled path within a virtual reality environment 

to navigate to different locations where stimuli 
were experienced. Mter exploration, free recall 
of the stimuli was tested. Because the sequence 
of locations was chosen randomly, the sequential 
contiguity of the stimuli and the spatial contiguity 
of the stimuli were decorrelated. At test, the recall 
transitions that subjects exhibited reflected not 
only the temporal proximity along the path, but 
also the spatial proximity within the environment. 
Moreover, Polyn, Norman, and Kahana (2009a, 
2009b) had subjects study concrete nouns using one 
of two orienting tasks. For some words, subjects 
would make a rating of its size ("Would this object 
fit in a shoebox?"); for other words subjects would 
rate its animacy. Polyn et al. (2009a, 2009b) found 
that recall transitions between words studied using 
the same orienting task were more common than 
transitions between words studied using different 
orienting tasks. 

Because the words in the list are randomly 
assigned, the preceding effects must reflect new 
learning during the study episode. In addition, 
participants' memory search also reflects properties 
of the words themselves acquired from learning 
prior to the experimental session. It has long 
been known that, given that a list including pairs 
of associated words (TABLE, CHAIR) randomly 
assigned to serial positions, the pairs are more likely 
to be recalled together (Bousfield, 1953). This effect 
generalizes to lists chosen from several categories­
when the words are presented randomly, subjects 
nonetheless organize them into categories during 
recall (e.g., Cofer, Bruce, & Reicher, 1966). 
Interestingly, the time taken to retrieve words 
within a category is faster than the retrieval 
time necessary to transition from one category to 
another (Pollio, Kasschau, & DeNise, 1968; Pollio, 
Richards, & Lucas, 1969). Semantic relatedness 
is also a major factor affecting recall errors (e.g., 
Deese, 1959; Roediger & McDermott, 1995). The 
effect of semantic relatedness on memory retrieval 
can even be seen when the words do not come 
from well-defined semantic categories. Semantic 
similarity can be estimated between arbitrary pairs 
of words using automatic computational methods 
such as latent semantic analysis (Landauer & 
Dumais, 1997) or the word association space 
(Steyvers, Shiffrin, & Nelson, 2004). There 
are elevated transition probabilities even between 
words with relatively low values of semantic 
similarity (Howard & Kahana, 2002b; Sederberg 
et al., 2010). 

RETRIEVED CONTEXT MODELS 

In the previous subsection we saw that many 
researchers have appealed to a representation of 
"context" that is distinct from the representations of 
the words in the list to explain free-recall initiation. 
We also saw that properties of context could be 
used to account for recency effects within and across 
lists if the states of context changed gradually. But 
a context that is independent of the list items 
seems like a poor choice to account for transitions 
between subsequent recalls, which seem to reflect 
the properties of the items themselves, both learned 
and pre-experimental. 

One approach is to have multiple cues contribute 
to retrieval. That is, analogous to the Humphreys 
et al. (1989) model discussed earlier, one could 
have both direct item-to-item associations, as in 
Eq. 9, and context-to-item associations, as in 
Eq. 11. When an item is available, either because 
it is provided as an experimental cue or because it 
has been successfully retrieved in free recall, one 
can use both the item and the context to focus 
retrieval. These two sources of information can then 
be combined, perhaps multiplicatively, to select 
candidate words for recall (Raaijmakers & Shiffrin, 
1980, 1981). This approach could readily account 
for semantic associations if the similarity of the 
vectors corresponding to different words reflects the 
semantic similarity between the meaning of those 
two words (Kimball, Smith, & Kahana, 2007; 
Sirotin et al., 2005). 

One could account for the contiguity effect 
over shorter time scales via direct item-to-item 
associations if associations are formed in a short­
term memory during study of the list. That 
is, rather than having the two simultaneously 
presented members of a pair be associated to one 
another in Eq. 9, one could form associations 
between all the words simultaneously active in 
short-term memory. At any one moment during 
study of the list, the last several items are likely 
to remain active in short-term memory. As a 
consequence, a particular word in the list is likely 
to have strengthened associations to words from 
nearby positions within the list. Recall of that item 
would provide a boost in accessibility of other words 
from nearby in the list. However, in much the 
same way that short-term memory has difficulty 
accounting for the recency effect across long time 
scales, this still leaves the question of how to 
account for contiguity effects across longer time 
scales. 

MODELS OF EPISODIC MEMORY I77 



(b) 
4 

(a) 0.4 
v 3 ••• ...ci 
~ • 2 .. 

~ 0.3 ~ 2 • r:: • . 2 
;;; 

~ 0.2 

~ 
·o 
~ 0 ~ -< c:: 

.g • • 
4 -1 •• •• • • 

~ • .. •• 0.1 "' •• "' •• c:: 8 • • • 0 -< -2 u 
• 0 -3 

--4 -3 -2 0 1 2 3 4 
-30 -20 -10 0 10 20 30 

Lag Across-list Lag 

Fig. 8.5 Transitions between words in free recall are affected by the order in which the words were presented. Here the probability of 
a recall transition from one word to the next is estimated as a function of the distance between the two words. Suppose that the 1Oth 
word in the study list has just been recalled. The lag-CRP at position + 2 estimates the probability that the next word recalled will be 
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After Howard & Kahana ( 1999). b. Subjects studied and recalled 48 lists of words. At the end of the experiment, they recalled all the 
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Retrieved context models address this problem 
by postulating a coupling between words and a 
gradually changing state of context. Rather than 
contextual drift resulting from random fluctuations, 
context is driven by the presented items. Each word 
i provides some input eft: 

Ci = pci-1 + ~ct. (15) 

For a random list of once-presented words, these 
inputs are uncorrelated, resulting in contextual drift 
analgous to 14. However, because the inputs are 
caused by the stimuli, the model is able to account 
for contiguity effects (Figure 8.4c). The key idea 
enabling the contiguity effect is the assumption that 
retrieving a word also results in recovery of the state 
of context in which that word was encoded. That 
is, if the word presented at time step i is repeated at 
some later time step r, then 

In addition to the input that stimulus caused 
when it was initially presented, it also enables 
recovery of the state of context present when it was 
presented, Ci-I . Because this state resembles the 
context when neighboring items were presented, a 
contiguity effect naturally results. If context changes 
gradually over long periods of time, the contiguity 
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effect naturally persists over those same periods of 
time (Howard & Kahana, 2002a; Sederberg et al., 
2008). Computational models describing details of 
free recall dynamics, including semantic transition 
effects have been developed (Sederberg et al., 2008; 
Polyn et al., 2009a). 

AUTONOMOUS SEARCH MODELS 

In retrieved context models, retrieval of an item 
causes recovery of a previous state of temporal 
context, resulting in the contiguity effect. This 
is not the only possibility, however. Consider a 
brief thought experiment. Try to recall as many 
of the 50 United States as possible (if the reader 
is unfamiliar with U.S. geography, the experiment 
should work just as well with any well-learned 
geographical region with more than a dozen or 
so entities). Most subjects recall geographically 
contiguous states (MAINE, VERMONT, NEW 
HAMPSHIRE ... ).3 Examining the recall protocols, 
we would observe a spatial analog of a contiguity 
effect-if the subject has just recalled a word from 
a particular spatial location, the next word the 
subject retrieves would also tend to be from a nearby 
spatial location. However, it is not necessarily the 
case that remembering one state (Michigan) caused 
recovery of a nearby state (Wisconsin). Rather, both 
words might have been recalled because the search 

happened to encounter a part of the map containing 
both of those states (the Great Lakes region). 

Autonomous search models provide an account of 
the temporal contiguity effect that is similar in spirit 
to that described above. In the Davelaar et al. (2005) 
account of the contiguity effect, retrieving a word 
has no effect on the state of memory used as a cue for 
the next retrieval. Rather, a state of context evolves 
according to some dynamics during study. It is reset 
to the state at the beginning of the list during recall 
and evolves according to the same dynamics during 
recall. Because it tends to revisit states in a similar 
order, the sequence of retrievals is correlated with 
the study order. Similarly, Farrell (2012) described 
temporal contiguity effects as resulting from the 
retrieval dynamics of hierarchical groups of chunked 
contexts (see also & Davachi, 2011). 

Autonomous search models have difficulty in 
accounting for genuinely associative contiguity ef­
fects. For instance, in cued recall, the experimenter 
chooses the cue-the fact that the correct pair 
is retrieved cannot be attributed to autonomous 
retrieval dynamics. Rather, the cue is utilized to 
recover the correct trace. The contiguity effect 
is observed under circumstances where the cue is 
randomized, eliminating the possibility that correla­
tions between study and retrieval cause the contigu­
ity effect (Kilic; et al., 2013; Howard, Venkatadass, 
Norman, & Kahana, 2007; Schwartz, Howard, 
Jing, & Kahana, 2005). The strong form of au­
tonomous models-that memory search is indepen­
dent of the products of previous memory search­
must be false. Nonetheless, the geographical search 
thought experiment is compelling. A challenge 
going forward is to mechanistically describe the 
representations that could support a temporally 
defined search through memory analogous to the 
spatial search in the geography thought experiment. 

Summary and Conclusions 
• A variety of detailed process models of 

performance have been developed in a variety of 

episodic memory tasks. 

• In recognition, differentiation and Bayesian 

decision rules have been important steps in 

advancing our understanding of recognition. 

• The major driver of models in recall has been 

an attempt to understand the nature of the context 

representation-more broadly what constitutes the 

cue in free-recall tasks. 

Open Problems and Future Directions 
• If nothing else, the diversity of models 

demonstrates that behavioral data alone is not 

sufficient to result in a consensus model of any of 

the tasks we have considered, let alone a general 

theory of episodic memory. Going forward, early 

steps to use neurobiological constraints on process 

models of memory (e.g., Criss, Wheeler, & 
McClelland, 2013; Howard, Viskontas, Shankar, 

& Fried, 20 12; Manning, Polyn, Litt, Baltuch, & 
Kahana, 2011) must be expanded. The results of 

these experiments must also affect the hypothesis 

space of models going forward. 

• The textbook definition of episodic memory 

is the experience of a "jump back in time" such 

that the subject vividly reexperiences a particular 

moment from his life. One of the major limitations 

in constructing models of episodic memory is that 

we do not have a coherent idea about how to 

represent time-context in the models we have 

discussed here may change gradually over time but 
is nonetheless ahistorical. Richer representations of 

temporal history (Shankar & Howard, 2012) may 

be able to provide a more unified approach to 

episodic memory (Howard, Shankar, Aue, & Criss, 

in press). 

• It is frustrating that there are so many 
differences between the item recognition models 

we have discussed and the recall models. The 

contiguity effect may provide a point of contact 

that could lead to the unification of these classes of 

models. Successful recognition of a list item during 

test seems to leave neighboring items in an elevated 

state of availability. Schwartz et al. (2005) 

presented travel scenes for item recognition 

They systematically manipulated the lag between 

successively tested old probes. That is, after 

presenting old item i, they tested old item i +lag. 

They found that when !lag! was small, memory for 

the second old probe was enhanced, but only when 

subjects endorsed the first probe with high 

confidence. The recovery of previous states given 

an old probe has been the focus of connectionist 

models of recall and recognition (Norman & 
O'Reilly, 2003; Hasselmo & Wyble, 1997) 

suggesting a point of contact between 

mathematical models of memory and connectionist 

modeling, perhaps via dual process assumptions 

(see Box 1). 
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Notes 
I. For instance amnesia patients with essentially complete 

loss of episodic memory are rypically unimpaired at serial recall 
of a short list of digits. 

2. Recent studies have significantly elaborated this empirical 
story (Jang & Huber, 2008; Unsworth. Spillers, & Brewer, 
2012; Ward & Tan, 2004). 

3. Occassionally, subjects will try to recall in alphabetical 
order (ALABAMA, ALASKA, ARIZONA ... ) or according to 
some other idiosyncratic retrieval strategy, but that is not central 
to the point. 
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