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COMMENTS

Context Noise and Item Noise Jointly Determine Recognition Memory:
A Comment on Dennis and Humphreys (2001)

Amy H. Criss and Richard M. Shiffrin
Indiana University

S. Dennis and M. S. Humphreys (2001) proposed a model with the strict assumption that recognition
memory is not affected by interference from other items. Instead, confusions are due to noise generated
by prior contexts in which the test item appeared. This model seems disparate from existing models of
recognition memory but is similar in many ways that are not superficially obvious. One difference is the
order in which item and context information are used as retrieval cues. A more critical difference is the
assertion that only an item’s history, and not other items, affects recognition memory. Conceptual
arguments along with the results of 2 experiments make a persuasive case that both types of noise affect
recognition. To illustrate the approach, the authors fit experimental data with a version of the retrieving
effectively from memory model (R. M. Shiffrin & M. Steyvers, 1997) incorporating both sources of noise.

Episodic recognition memory tests require participants to dis-
tinguish items presented on arecent list (targets) from those not so
presented (foils). Two types of information are considered impor-
tant for such atask: item and context. Item information refers to
the spelling, semantics, and other information describing the item
itself. Context information refers to the location, mood, and other
environmental factors present with the item. In typical studies, the
items on a given list have been stored in memory prior to the
experiment. Thus, a match of item information verifies the exis-
tence of that test item in memory but is insufficient to verify that
the item was on a particular study list. Similarly, a match of
context information merely confirms the storage of something
from the current context but is insufficient to determine that a
particular test item had been stored. Logically, then, successful
recognition requires a match of both item and context information
to memory.

The first part of our comment on the bind cue decide model of
episodic memory (BCDMEM; Dennis & Humphreys, 2001) em-
phasizes the formal similarities of the model to other extant models
of episodic recognition. We point out that various models differ in
the order in which item and context cues are used during retrieval.
However, we argue that such differences are not easy to test and
are not core assumptions of the models. The second part of our
comment concerns the strong claim by Dennis and Humphreys
(2001) that item noise plays no direct role in recognition memory
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performance. We present data from two new experiments and
discuss previous work suggesting that both item noise and context
noise play important roles in recognition. Finaly, we present a
modified version of the retrieving effectively from memory (REM)
model (Shiffrin and Steyvers, 1997) that unpacks the noise com-
ponent into the three types we discuss in the following section.

Figure 1 represents an episodic recognition situation in which
the memory traces of different words are shown as separate traces,
with each trace containing both context and item information.
(However, our arguments also apply to modelsin which storage is
composite.) In this example, a set of items was studied, and the
word casino serves as the test item. Traces of words presented on
the study list are depicted to the left of the dashed vertical line, and
traces of other words are depicted to the right of this line. Within
each row and within each of these sets, the traces are ordered by
the similarity of their contents to the test word (higher similarity
toward the left). Within each column, the traces are ordered by the
similarity of their context to the test context (higher similarity
toward the top). In this example, the test word casino is a target
and hence is at the upper left. The most similar list word is poker
and is next to theright. Toad isadissimilar list word and is farther
still to the right. Gambling is a similar word that was not on the
study list but was encountered recently outside the experiment and
hence is near the top of the column to the right of the dashed
vertica line.

If atarget istested, the top | eft trace tends to match best because
this trace matches both the context and the content of the probe.
The second best matches tend to be the traces relatively close to
the top left corner, including both those traces matching in context
but not exact content (i.e., the top row) and those matching content
but not exact context (i.e., the first column). Traces of words that
were not presented on the study list and do not exactly match the
test word (i.e., those traces to the right of the vertical line) may also
match to a lesser degree. If a foil is tested, there is no trace
matching both content and context, but there are secondary
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Figure 1. A schematic representation of episodic memory in which the
current test word is casino. Each word represents a memory trace contain-
ing both context and item information. Items to the left of the dashed
vertical line were presented on the study list and are ordered by similarity
to the test item. Time runs aong the vertical axis, with the most recent
study list in the top row.

matches of the types just described. Noise in the storage and/or
retrieval processes guarantees that occasionally a target will not
match well (producing misses) and afoil will match unusually well
(producing false alarms).

Global item-matching models refer to those models in which the
majority of interference is caused by other items from the study
list. These models have proved successful for a number of years,
accounting for data in recognition, free recall, serial recall, cued
recall, and associative recognition (Gillund & Shiffrin, 1984;
Hintzman, 1988; Humphreys, Pike, Bain, & Tehan, 1989; McClel-
land & Chappell, 1998; Murdock, 1982, 1997; Shiffrin & Steyvers,
1997). We use the term item-noise model to refer to the extreme
form of such a model in which the noise contributed by sources
other than list items is negligible (i.e., the top row of Figure 1
produces al the noise). Although most theorists, including those
cited above, had in mind some form of a global item-matching
model, their models have often been implemented for simplicity as
item-noise models.

Models assuming that the magjority of confusion is caused by
other contexts in which the test item occurred will be termed
global context-matching models. We use the term context-noise
model to refer to an extreme form of this class of models in which
the noise contributed by anything other than traces of the test item
isnegligible (i.e., in Figure 1, traces in the column for the test item
produce all the noise); an example of such a model is BCDMEM.
To restate, the major difference between BCDMEM and other
memory models lies in this strong assumption that other studied
items do not contribute to the recognition decision.

Another difference between BCDMEM and global familiarity
models is the order in which context and item cues are used to
probe memory. In some models, these cues are used jointly in a
simultaneous probe of memory (e.g., Gillund & Shiffrin, 1984;
Murdock, 1997). In others, the context cue is used first to activate
a set of items, and then the item cue is matched to traces in the
resulting set (e.g., REM). In the remaining models, the item cue is
used first to activate a set of items, and then the context cue is

matched to the traces in the activated set (e.g., BCDMEM). De-
ciding between these orders is a most difficult problem because
performance in an episodic recognition task cannot rise above
chance until both cues have been used. The cuing order is not a
fundamental assumption of either BCOMEM?' or REM, and we
therefore focus our efforts on the critical difference between these
models: the source of noise in recognition memory.

BCDMEM is indeed distinguishable from extant models by
virtue of its strong assumption that only context noise plays arole
in recognition memory. It is this issue that we explore in the
remaining part of this comment, and it is this assumption that we
argue is inadequate.

Experiment 1

In BCDMEM, the memory probe activates all past traces of the
test item but not traces of words presented on the recent list.
Because none of the other list words are activated, they do not
contribute noise, and confusion arises only from previous contexts
in which the test item occurred. This aspect of the model seems, on
the surface, at variance with empirical data showing effects of list
length and similarity.

A list length effect is represented by the decline in discrimina
tion associated with adding nominally unrelated items to the study
(e.g., Gronlund & Elam, 1994). However, Dennis and Humphreys
(2001) proposed that list length effects might be due to various
confounds including attention drift, study—test lag, displaced re-
hearsal, or failure to reinstate the study context.

Similarity effects are often instantiated in recognition studies by
an increase in both hits and false alarms when there is an increase
in the number of studied itemsthat are related to the test item (e.g.,
Shiffrin, Huber, & Marinelli, 1995; Sommers & Lewis, 1999; Zaki
& Nosofsky, 2001). To explain similarity effects, Dennis and
Humphreys (2001) suggested that participants invoke strategies
when they notice a categorical relation among members of the
study list. For example, study lists with noticeable categorical
relations may encourage participants to generate a word associated
to the study word, termed an implicit associative response (I1AR;
Underwood, 1965). Dennis and Humphreys proposed that an IAR
results in storage of the generated word and study context as if the
generated word had been presented on the list. According to
BCDMEM, increased false alarms to test items that are similar to
list items are due to the context stored with those test items that
had been generated as IARs during the study list. Thus similarity
effects, according to BCDMEM, are due to the storage of study
context for items generated via IARs and not due to activation of
similar list items.

These hypotheses based on IARs are not without conceptual
problems. The presence of similarity effects does not seem depen-
dent on the use of stimulus materials and designs fostering the use
of IARs. Similarity effects are found in studies using categories
constructed from colors (Zaki & Nosofsky, 2001) and word cate-
gories that were constructed to have low associative connections

1 This information is based on a personal communication with Simon
Dennis on September 3, 2002.
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on the basis of word association norms (Shiffrin et al., 1995).2
Another problem concerns a relation between list length effects
and |ARs. Dennis and Humphreys (2001) argued against the
existence of true list length effects, but their IAR hypothesis seems
to imply that such effects will be generated by 1ARs themselves.
According to the IAR hypothesis, afoil tends to be mistaken for a
target if it had been generated during study. The chance that this
will happen depends on the number of 1ARSs generated during
study, and this number will rise with list length. Thus, an IAR
mechanism will itself produce list length effects. To make these
two views consistent, one must argue that IARs do not contribute
significantly, except in special circumstances, such as massed
study of very similar items (e.g., Roediger & McDermott, 1995).
Thus athough IARs almost certainly exist, it is difficult to argue
they provide a general account of similarity or list length effects.
To sharpen these arguments, we report a study with novel faces as
stimuli, for which IARs are implausible and could not account for
such effects.

Method

Participants.  Sixty-seven Indiana University undergraduates partici-
pated for partial course credit.

Simulus materials. Categories of words, related either by semantic or
orthographic—phonemic similarity were used along with categories of
similar faces. Each of the nine semantic categories consisted of 1 prototype
word and 12 exemplar words semantically related to the prototype word.
Each of the nine orthographic—phonemic categories consisted of a proto-
type word of three or four letters and 12 exemplars that shared a vowel
sound and exactly one consonant cluster with the prototype word. The
word categories are a subset of those used by Shiffrin et al. (1995), and
additional details about these stimuli may be found there. The 18 face
categories, half of which were male and half female, had 12 exemplar faces
each and no prototype. These face categories can generally be described as
clustering within category and differing between categories on the dimen-
sions of race, age, and hair color and style. Individual faces were taken
from college yearbooks and face databases, including The Database of
Faces (AT&T Laboratories Cambridge, n.d.). Note that we use the word
prototype in an atypical manner, referring to the word used to generate each
category, not the average, central tendency, or label for the exemplars.

Procedure. The study list consisted of face-word pairs, each pair to be
rated on the following question: “What is the degree of association between
these two items?” For each participant, categories were randomly assigned
list lengths of 2, 6, or 9 items, such that there were three categories of
female faces, mae faces, semantic words, and orthographic—phonemic
words assigned to each list length. In addition, 20 unrelated words and 20
unrelated faces were studied for a total list length of 244 items. The
word-face pairings were random with respect to category (in no case were
al members of a particular face category paired with a particular word
category), and the exemplars from any category were spaced throughout
the entire list.

For the unexpected memory test, participants were asked to do two
things: (a) to report their confidence that the test item itself had been on the
study list and (b) to give their best estimate of the number of items on the
study list that were similar to the test item in appearance, sound, spelling,
or meaning, including the test item itself if it had been studied. The second
of these items was used in place of gist instructions (see Brainerd & Reyna,
1998) because norma gist instructions would not make sense for face
stimuli. There were two test blocks, one for words and one for faces, with
the order of the blocks and presentation of items within blocks randomized
for each participant. For each word category, the test items included the
prototype, 2 studied words, and 2 related foils. For each face category, the

test items included 2 studied faces and 3 related foils. In addition, 10 word
foils and 10 face foils that did not belong in any category (unrelated fails)
were tested for a total of 200 test trials.

Results and Discussion

Participants are reluctant to use different response criteriawithin
asingletest list, even when the items are from different categories
(Morrell, Gaitan, & Wixted, 2002; Wixted & Stretch, 2000). In
such a case, global item-matching models predict that increasing
category length will result in an increase in the hit and false alarm
rates (see Shiffrin et al., 1995). Furthermore, such models make
the same predictions for faces and words. BCDMEM can predict
an increase in hit and false alarm rates for the word categories on
the basis of the IAR hypothesis. However, an AR mechanism
does not work for novel faces. Realizing this and other problems
posed by novel materials (including the assumed representation of
local codes in which each item is represented as a single node in
memory and the presentation of an item perfectly activatesits own
node), Dennis and Humphreys (2001) restricted the domain of
applicability of BCDMEM to known rather than novel items.
Strictly speaking, then, our face results cannot be used to rule out
BCDMEM. Nonetheless, similar results obtained for words and
faces would suggest similar underlying processes and would
thereby support global item-matching models.

False alarms were higher for faces than for words, F(1, 66) =
9.14, p < .01, but arepeated measures analysis of variance showed
no interactions; thus, we collapsed over words and faces. False
aarms to related foils rose with category length, F(2, 132) =
16.26, p < .01. False alarms for prototype words (recall that there
were no prototype faces) showed a more pronounced increase with
category length, F(2, 132) = 17.59, p < .01. Analysis of the hit
rates revealed an uninteresting interaction between item type
(word vs. face) and subtype (semantic vs. orthographic—phonemic
and male vs. female) but no other interactions. Overall, faces had
lower hit rates than words, F(1, 66) = 39.28, p < .01, and the
apparent effect of category length for targets was not significant.
Figure 2 shows the overall probability of an “old” response,
P(old), collapsed over word and face categories, and Table 1
contains the full set of data for each condition. We cannot rule out
a criterion shift on the basis of category length, but note that this
must be done on atrial-by-trial basis—an assumption that seemsto
require some (explicit or implicit) knowledge about the amount of
item noise for each particular test item. It seems strange for
BCDMEM to assume that some item-noise calculation is used to

2Dennis and Humphreys (2001) discussed Anisfield and Knapp's
(1968) finding of the directionality of false recognition. That is, false
alarms to B increase when studied item A elicits B during free association,
but studying B (which does not €licit A) did not increase false darmsto A.
However, Anisfield and Knapp did not propose that false alarms are found
only in such special circumstances. In fact, because of an experimental
confound they stated “for this reason it is not possible to conclude that
backward associative relations cannot produce false recognition” (p. 177).
If this finding is replicated in future research without confounds, it would
nevertheless be easy to accommodate in globa item-matching models by
including a mechanism for |ARs because |ARs are more likely to occur for
forward than backward associations.
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Figure2. The probability of an “old” response, P(old), in Experiment 1, collapsed over al types of categories
asafunction of the number of category exemplars on the study list. Error bars represent one standard error above
and one standard error below the mean. Open circles are fits of the modified retrieving effectively from memory
(REM) model.

Table 1
Average Probability of an “ Old” Response for Each Condition
of Experiment 1
Category length
Test items 0 2 6 9
Words

Target

Semantic 746 726 724

Orthographi c—phonemic .642 .687 719
Prototypes

Semantic 194 .383 403

Orthographic—phonemic 144 .189 274
Related foils

Semantic 137 174 .219

Orthographi c—phonemic .202 211 234
Unrelated foils

Semantic .087

Orthographic—phonemic .146

Faces

Targets

Female .515 .542 .567

Male 557 .590 .580
Related foils

Female .207 .269 .295

Male 212 .294 313
Unrelated foils

Female .206

Male 221

change the criterion for each test item, but this same information
would not be used as a basis for the decision.

In summary, athough BCDMEM could assume IARs for the
word categories, despite our attempts to reduce such occurrences,
it has no account for the similar pattern of results for face catego-
ries. Thus, for reasons of parsimony, we prefer a globa item-
matching model explanation— one that assumes decisions for both
words and faces are based on overall familiarity of the probe to the
items in memory.

Participants were also asked to estimate the number of items on
the study list that were similar to the test item. Because participants
were free to respond on any scale, we collected the estimates of
each participant (separately for faces and words) and transformed
these to z scores. The z scores were then averaged across partici-
pants. The estimates increased with category length for all types of
items. targets, F(2, 132) = 1548, p < .01; related foils, F(2,
132) = 20.82, p < .01; and prototypes, F(2, 132) = 15.77, p <
.01. Estimates to related foils showed a three-way interaction
between item type (face vs. word), subtype (male vs. female and
orthographic—phonemic vs. semantic), and category length. This
interaction was due to the larger impact of length on semantic
categories than on orthographic—phonemic categories, F(2, 132) =
4.98, p < .01. Generaly, the semantic categories seemed to have
alarger impact on participants estimated number of similar items
than did orthographic—phonemic categories, perhaps because of
mechanisms such as |ARs or greater cohesion between members
of semantic categories. The estimates largely mimicked the pattern
of data found for P(old), but the increase in estimated number of
similar items with category length was more pronounced and was
statistically significant for al types of test items. The combined
results argue in favor of globa item-matching models because
such models predict our findings for both types of materials on the
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basis of use of the same information (i.e., overal activation),
whereas BCDMEM has no account for the face results.

Having made a case for the existence of item noise in any model
of episodic memory, we now turn to an experiment in which we
attempt to instantiate a structure similar to that depicted in Fig-
ure 1, thereby making context noise an experimentally varied
factor.

Experiment 2

The goal of this experiment was to investigate the influence of
both item and context noise within a single experiment. Context
noise was manipulated by including a series of three study lists and
by repeating some study items on more than one list. Item noise
was manipulated by including categories of varying length on the
final study list. By varying category length rather than list length,
this design removes the various artifacts bedeviling list length
studies, as discussed by Dennis and Humphreys (2001). We aso
used an incidental study design to reduce the chance that partici-
pants will purposefully produce |ARs. Global item-matching mod-
els predict that traces similar to the test probe in context, item, or
both will produce noise, affecting the recognition decision.
Context-noise models predict that interference is a function of the
previous occurrences of the test item and performance should not
change as similar items are added to the study list. Both model
types predict strong effects of context noise.

Method

Participants. One hundred seven undergraduates from Indiana Univer-
sity completed the experiment for partial course credit.

Simulus materials. The stimulus materials were 24 categories of
words including 15 semantic categories used by Shiffrin et a. (1995) and
9 similarly constructed categories.

Procedure. Each participant studied three successive lists of 92 words,
separated by arithmetic tasks. Different incidental tasks (ratings of pleas-
antness, typicality, or personal relatedness) were used for each of the three
lists. The order of the tasks was randomly assigned for each participant. A
final unexpected recognition test required participants to say “old” to
words presented on List 3 and “new” to all other words. We manipul ated
context noise by presenting words in more than one of these lists and
testing words that might have been studied in various combinations of Lists
1, 2, and 3 or that might not have been studied at all. We manipulated item
noise by varying the number of words studied on List 3 that were members
of the category of a given test item.

On each of thefirst two lists, 80 words were fillers and the other 12 items
were termed critical words. There were 3 critical words tested in each of
the following 8 conditions: never presented (none), presented on just one
list (1, 2, or 3), presented on two lists (1 and 2, 1 and 3, or 2 and 3), or
presented on all three lists (1, 2, and 3). The third list contained additional
exemplars from the category of each critical word, and the number of such
exemplars was manipulated. For each group of 3 critical words, 1 was a
member of a category with no other exemplars on List 3, 1 was a member
of a category with 3 other exemplars on List 3, and 1 was a member of a
category with 7 other exemplars on List 3. Thus, there were 24 conditions
in all. The exemplars within any category were randomly spaced through-
out the third list.

The unexpected recognition test began with 4 practice trials followed by
120 test trials containing an equal number of targets and foils. There were
two types of targets including the 12 critical words that appeared on List
3 (and possibly on other lists) and 3 exemplars from each category

presented on List 3 (not including those categories with length zero) termed
related targets. In addition, there were three types of foils including the
critical words that were not on List 3, called studied foils; the unstudied
category prototypes; and 1 unstudied foil from each of the 24 categories.

Results and Discussion

Figure 3 shows that P(old) to a critical word was systematically
related to the item’s history. A within-participants linear contrast
verified that false alarms to studied foils rose to the degree that a
foil had been presented in amore recent list (or lists), F(1, 106) =
300.20, p < .01. Such effects did not occur for targets, perhaps
because of a ceiling effect for repeated items. Note also that the
number of repetitions of an item across lists affected response
probabilities. Paired t tests verified that false aarms to items
repeated on two lists was greater than the false alarm rate for items
occurring only on the first list, t(106) = 4.84, p < .01, and greater
than the false adarm rate for items presented only on List 2,
t(106) = 3.70, p < .01. Likewise, repeating targets increased the
hit rate, confirmed by within-participants linear contrast, F(1,
106) = 19.83, p < .01. In summary, context noise caused consid-
erable interference, as measured by P(old) to words presented on
prior experimental lists.

We also found an effect of item noise, as measured by the
changes associated with category length (i.e., the number of cat-
egory exemplarson List 3). Asisapparent in Figure 4, false dlarms
increased with category length in all cases. These observations are
confirmed by within-participant linear contrast for studied foails,
F(1,106) = 5.59, p = .02; prototypes, F(1, 106) = 96.87, p < .01,
and unstudied foils, F(1, 106) = 15.40, p < .01. The false alarm
rate is much higher for studied foils than for unstudied foils, but
both types of test items are similarly affected by category length.
The effects for targets were much smaller and not statistically
significant.

In our view, the simplest account of these results is based on
significant roles played by both context noise and item noise. In
global item-matching models, context noise produces theincreased
tendency to say “old” to words presented on Lists 1 and/or 2 and
therefore reduced performance for such words. Item noise pro-
duces the changes in P(old) as a function of the number of
category exemplars presented on List 3.

A Modified REM Model

Consider the simple version of REM as introduced by Shiffrin
and Steyvers (1997) for application to recognition memory: Each
item is stored as a separate vector containing both context features
and item features, in which the feature values are positive integers
drawn from a geometric distribution with parameter g. During
study, an incomplete and error prone copy of each itemis stored in
episodic memory. When study time is not varied, we let u give the
probability for each feature that some nonzero value is stored
during the study period. If afeatureis stored, the correct value will
be stored with some probability ¢, and a random feature value
drawn from the geometric distribution will be stored with proba-
bility 1 — c. Features not stored are coded as zeros. At test, context
features are used as a probe and assumed to activate all traces of
words on the recent list. Then, the item features are used as a probe
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Figure 3. The context noise conditions from Experiment 2 showing the probability of an “old” response,
P(old), as afunction of the study list(s) on which the item occurred. The first four bars show results for targets,
and the last four bars show results for foils. The numbers below each column give the lists in which a given test
word was presented. Error bars represent one standard error above and one standard error below the mean. Solid
circles are fits of the modified retrieving effectively from memory (REM) model.

and are compared with the activated memory traces. In particular,
alikelihood value, A;, is calculated for amemory trace i according
to the following equation:

A== c)niqﬂ[” (1-0g(l -9 }, o
i

g1-g'*

where niq is the number of nonzero mismatching features and njim
is the number of matching features with the value j. The term
before the product represents discounting due to mismatching
features between the probe and memory trace. The term after the
product represents the positive evidence gained from matching
features. Note this term includes both those features that match
because they were copied correctly (the portion before the addition
sign) and those features that were stored incorrectly but happen to
match by chance (the portion following the addition sign). The
parameter u does not enter the likelihood calculation (because a
feature with a zero in the trace does not enter the calculation) but
does affect the values of nig and njim.

The mean of these likelihood values gives the odds that the test
item is old. If the odds value is greater than some criterion (the
optimal value of 1.0 is typicd), then the item is caled “old,”
otherwise it is called “new.”

This model is too simple to be used for experiments of the
present type. In fact, the more complicated models presented in
Shiffrin and Steyvers (1997) are aso inappropriate because they
fail to take both context and item noise into account in balanced
fashion. Thus, we offer an alternative decision rule in which
likelihood ratios and odds are calculated on the assumption that
foil traces may consist of three types, and traces similar in context
and traces similar in content are treated in a balanced way.

If the trace is a target, its features will tend to match the test
probe on both context and item features. Otherwise, the trace is a
foil, and its features will tend to match the test probe in one of the
following ways: match on some context features only (Ch), match
on some item features only (€1), or match neither the context nor
item features (C). If these three types of foils are considered
separately, the odds equation becomes

1 P(D;[0)
®=N2| yrolen+ a-yarofen| @
+(1- )1~ a)P(DCh

where the D; refers to the evidence, that is, the matching and
mismatching feature values for the ith trace. The numerator rep-
resents the probability of the evidence given that the test item is
old (O), and the denominator represents the probability of the
evidence given that the test item is one of three types of fails. y is
the probability that noise comes from foils that do not match on
item or context features, and « is the conditional probability that
noise comes from foils matching item but not context features,
given that something matches. N refers to the number of tracesin
episodic memory. Rearranging terms and writing this formula in
terms of likelihood values calculated by Equation 1, we see that

® = %Em:&ml + (1= yary’
+ (1 =yA-aAd]h (9

where A is the likelihood value calculated from the context
features of the test probe and memory trace i and A, is the
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Figure 4. The item-noise conditions in Experiment 2 showing the probability of an “old” response, P(old), as
afunction of the number of additional studied exemplars from the test word category that were presented in List
3. Error bars represent one standard error above and one standard error below the mean. Open circles are fits of
the modified retrieving effectively from memory (REM) model.

likelihood value calculated from the item features of the test probe
and memory tracei. If « = 1 and y = 0, al noise comes from the
item features and the context features are ignored. Examination of
Equation 3 reveals that the odds value is high if both the context
and item likelihoods are high. But if this is the case, then the first
term (which combines the match from both item and context) is
largely redundant and may be removed without changing the model
significantly (afact we verified through simulation). We therefore set
v = 0. Note that the sum till occurs over al memory traces, including
the ones that generally mismatch in both context and item; such traces
till contribute noise, but they do so through their tendency to mis-
match context and item separately rather than jointly. The smulations
in this article therefore caculate the odds as follows:

d = %Z[a)\ﬂl +(1— @A (4)

To apply the model, one must build item representations (i.e.,
vectors of feature values) that represent the structure of the study list.
We started by fixing each vector to have 20 context features and 20
item features, drawn from the geometric distribution with parameter
0. The item features were congtructed as follows. A set of 20 item
values is randomly sampled to make a category vector for each
category. All items in a category are constructed by copying some
proportion of the features of this category vector. For a given cate-
gory, the prototype vector is constructed by copying each feature
value with probability p.,, and each exemplar is constructed by
copying each festure value with probability pe,. Any features not
copied arefilled with randomly sampled values. The valuefor p,, was
held constant for both experiments. For smplicity, we used the same
vaue for p, for the different category types within study but let this
vaue differ between studies (because Experiment 1 used both seman-

tic and orthographic—phonemic categories but Experiment 2 used only
semantic categories).

To construct the context features, we assume these features vary
between the lists but remain constant throughout any single list.
For Experiment 2, with three study lists, an initial context vector is
chosen with random values and used as the context for List 1.
These context feature values are then copied with some probabil-
ity, Py tO the context for List 2, with noncopied values chosen
randomly. Then, this context vector is transformed into the context
vector for List 3 by the same process with the same parameter.

The item’s vectors (containing both the item and context fea-
tures) are then stored as incomplete and error prone episodic traces
as described above, with the parameters u and c. The value of u,
the probability that a feature is stored, was allowed to vary across
experiments, and the value of ¢ was fixed on the basis of prior
applications of the model.

Experiment 1 contained a single study list, and we therefore
assume that the memory search at retrieval is restricted to items
from that list and the item features are simply those for the
particular test item. To model Experiment 2, we assume that the
context features of the test probe are those for List 3 and the item
features are those for the particular test item. Theretrieval rulesare
those already described: Odds values are calculated with Equation
4, and an old response is made if that value is greater than 1.0. The
parameter space was not searched exhaustively but only until a fit
was obtained that reproduced the pattern of the data sufficiently
well to demonstrate the merit of the approach.®

3 We treated « as a free parameter, although another plausible approach
would have matched « to the actual proportions of traces of each type.
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The circlesin Figures 2—4 show the model fit on the basis of the
following parameter values. The values of g = .4 and ¢ = .9 were
fixed on the basis of prior applications of REM. The valuesof a =
.6 and p,, = .33 werefit to the data but constrained to be the same
for both experiments. The remaining parameters were fit to the
data and alowed to vary between experiments: for Experiment 1,
Peee = -7 @nd u = .19; and for Experiment 2, py, = .85, P = -8, and
u = .37. The fit certainly could be improved if we used additional
parameters (or perhaps if we searched the parameter space more
fully), but the fit shown is sufficient to illustrate the way the model
accounts for the results with a mixture of context and item cuing.

A few notes about the parameters are worthy of mention. A
higher value of p, results in too little context change between
lists, and the resultant predictions are nonmonotonic with the data.
A somewhat lower value of p., results in too much context
change, predicting too few false dlarmsto studied foilsfrom earlier
lists. Thus, the value of pg, is tightly constrained by the data (as
are the values of p., and p,,). Conversely, «, the parameter
governing the relative weighting of context and item likelihoods,
can take on awide variety of midrange values without dramatically
changing the predictions. The reason is related to the fact that the
likelihood ratios have a highly skewed distribution whereas « pro-
duces a linear mixture: Even after weighting by «, alarge likelihood
vaue tends to remain relatively large and a smdl likelihood value
tends to remain relatively small over midrange values of «.

Reprise

The article by Dennis and Humphreys (2001) does a valuable
serviceto the field by highlighting the importance of context noise.
Thisfactor has been present in prior models, but usually only asan
afterthought (and often ignored in simulations). Indeed, in our
second study the effect of context noise was much larger than that
of item noise, presumably because we used foils from very similar
contexts (i.e., recent lists). In more typical studies using foils never
presented in the experimental session, the relative importance of
context noise would be lower but still important. Thus, in this
comment, we have not tried to argue against context noise but have
argued that item noise also plays a role. This assumption is
explicitly denied in the BCDMEM model (Dennis & Humphreys,
2001). Whereas other models allow both item noise and context
noise, BCDMEM allows only context noise. We have presented
relevant data and plausibility arguments in favor of the view that
both types of noise play important roles in memory retrieval. It is
important to emphasize that a slight modification to BCDMEM
would align it closely with the other models we have mentioned.
The assumption that the test probe activates only past instances of
the test item (or in BCDMEM terms, only the context vector
associated with the node for the test item) could be expanded to
include the activation of nodes of similar words. Such an augmen-
tation would leave order of cue utilization as the primary factor
distinguishing BCDMEM from other models, and we have aready
noted that this is not a core assumption of any of the models under
discussion and may not be readily testable. To us, models that incor-
porate both item and context noise seem simpler, more elegant, and
better in accord with the data. One important potential consequence of
this dialogue is the hope that the question will shift from a qualitative

one concerning the existence of item and context noise to a quanti-
tetive one concerning the details of models that incorporate both. As
one step toward that goal, we have presented amodified version of the
REM model incorporating both item and context noise.
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