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Four experiments tested the predictions made by the model outlined in A. H. Criss and R. M. Shiffrin
(2004b). Participants studied 2 successive lists of pairs followed by a recognition memory test for the
most recent list. Some items and some pairs were repeated across the 2 lists. Critically, a given item could
be repeated in the same or different type of pair. For associative recognition, performance was only
affected by repetitions in the same pair type. However, in single-item recognition confusions occurred for
both types of repetitions. The results are as predicted and confirm the assumption that different
associative representations were stored even when the same token repeated in different pair types,
whereas similar item representations were used regardless of pair type.

Keywords: list discrimination, associative recognition, memory models, recognition memory

A frequently pursued question in many domains within psychol-
ogy is whether a set of features is more than a simple sum of their
parts (e.g., Asch, 1964, 1969). Within the domain of human
memory, this question has taken the following form: Is the asso-
ciation between two items stored as the simple co-occurrence of
the two items or as an emergent set of features? Each of these
assumptions has been adopted in extant competing models. For
example, models such as REM (Shiffrin & Steyvers, 1997) and
MINERVA (Hintzman, 1988) have adopted the co-occurrence
assumption and represent an association as a combination of the
two vectors representing each of the two singletons (a concatena-
tion into a double long vector in REM and a summation of the two
item vectors into a single vector in MINERVA). Models including
TODAM (Murdock, 1982, 1997) and CHARM (Metcalfe-Eich,
1985) assume an emergent representation and model it as a third
vector that contains features independent of either vector repre-
senting the singletons.

Early empirical work addressing this issue focused on paired-
associate learning. Many studies were developed to uncover the
conditions where the learning of the pair AC is affected by the
prior learning of pairs sharing the single items A or C (e.g., AB or
DC, in which the first letter represents the word given as a cue and
the second letter represents the response to be generated by the
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participant; e.g., Greeno, James, & DaPolito, 1971; Martin, 1968;
Postman, 1976). The hypothesis that pairs are stored as emergent
configurations was supported when learning AC did not change
(relative to baseline) following study of pairs such as AB or DC.
A competing hypothesis holds that an association is simply a link
or connection between two existing items in memory; in this case,
the level of interference is determined by the number and strength
of these links. Different sets of data favored each hypothesis. For
example, some studies found positive transfer occurs when the
cues are related to one another. That is, performance for AC is
better following learning of BC when A and B are related (e.g.,
Greeno, James, DaPolito, & Polson, 1978). On the other hand,
negative transfer occurs when the cue is repeated with a new
response unrelated to the previous response (e.g., Greeno et al.,
1971; Melton & Martin, 1972). That is, performance for AC is
worse following study of AD when D and C are unrelated. This is
often attributed to persistence in encoding or the idea that once an
item is encoded in a particular way, it tends to be encoded in a
similar manner in future study episodes. However, the empirical
support for each of these was marginal. Studies have found the
opposite of each (e.g., Greeno et al., 1978; McGeoch, 1942), and
other studies found a decrement in performance when any member
of the pair is repeated (Rock & Ceraso, 1964). This lack of a
clearly interpretable picture surely contributed to decades of ne-
glect of the issue in question, especially in the domain of paired-
associate learning.

More recently, these issues have been addressed using the
associative recognition (AR) task. In AR, participants study pairs
(AB, CD, EF) and are tested with intact (AB) pairs and rearranged
(CF) pairs. In a typical design, the familiarity of any individual
item is irrelevant because both test items had been studied on the
preceding list. To be successful in this task, participants must be
able to judge whether the two items occurred together. Several
studies have tried to distinguish the co-occurrence assumption and
the emergent features assumption using AR, with the results typ-
ically favoring an emergent features approach (e.g., Clark, Hori, &
Callan, 1993; Criss & Shiffrin, 2004b; Hockley & Cristi, 1996a,
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1996b; Kahana, 2002; Murnane & Shiffrin, 1991, included a
sentence version of AR; see Clark & Gronlund, 1996, for a review
of such studies). However, in several studies, issues of represen-
tation became entangled with issues of the processes underlying
AR (i.e., whether AR requires an additional search-based recall or
recollection process rather than a single familiarity process).
Criss and Shiffrin (2004b) obtained evidence pointing to differ-
ences in representation as a basis for the patterns of data, regard-
less of the nature of the retrieval process used to carry out AR. We
mixed various classes of pairs and found that AR performance was
determined by the number of pairs within one class, but not by the
number of pairs in other classes. Specifically, we found that
word-word pairs (WW), word—face pairs (WF), and face—face
pairs (FF) did not interfere with one another, even though we
found interference within each class. For example, performance
for WF pairs was determined solely by the number of studied WF
pairs; adding WW or FF pairs to the study list had no influence on
WF performance, but adding WF pairs lowered performance. The
same result held for all three types of pairs, despite some pairs
sharing a common type of single item (e.g., both WF and WW
pairs contain words and both WF and FF pairs contain faces). We
also tested single item recognition and obtained a different result:
Differences in the number of each pair type had no effect. These
results are not consistent with any extant quantitative memory
models because such models assume some overlap of representa-
tion (albeit for different reasons in different models) and therefore
predict between-class interference. In co-occurrence models, such
as REM and MINERVA, pairs are composed of the same features
as the singles from which they are composed and thus both must
show the same pattern of interference. In models assuming emer-
gent pair features, such as TODAM and CHARM, pairs and
singles contain different information but nonetheless are combined
into a single composite memory vector, and thus all studied items
contribute to the memory decision.' To account for the pattern of
data, we suggested modifications that could be implemented in any
extant model. Specifically, we suggested the following: (a) that
single items are stored such that they contribute to the decision
about other single items, regardless of the type of pair in which the
items were studied; (b) that pair features are emergent in that they
do not contain the same information as single items; and (c) that
pairs of different types are stored with dissimilar representations.
In this study, we continued to explore the viability of co-
occurrence and emergent assumptions by gathering evidence on
the relationship between the stored associative features and the
features of the items from which the association was created. To do
so, we used a three-phase list discrimination design (e.g., Criss &
Shiffrin, 2004a; Jacoby, 1991; Maddox & Estes, 1997) in which
two lists of pairs are studied. Some singles and some pairs were
repeated between the study lists, but the recognition memory test
required an “old” response only if the exact test probe had been on
the most recent list. Across the two lists, some participants studied
repetitions of items in the same type of pair and others studied item
repetitions occurring in different types of pairs. Thus, we were able
to measure the contribution of item repetitions that occurred in the
same or different type of studied pair. In addition to gathering
converging evidence for the Criss and Shiffrin (2004b) findings
and testing the proposed model, this set of experiments also
provided one of the first sets of data on list discrimination in AR.
Our design was based in part on prior findings showing that
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participants have difficulty rejecting single items that were pre-
sented on study lists other than the one being tested (e.g., Criss &
Shiffrin, 2004a; Hintzman, Caulton, & Levitin, 1998). However,
we know of no study that tests AR in a similar paradigm. Thus, we
tested both AR and single-item recognition to compare the patterns
of data between the two tasks.

Experiments 1 and 2

In our previous AR studies showing a list length effect restricted
to pairs of the same type, we did not measure direct interference
because individual items did not repeat (Criss & Shiffrin, 2004b).
Instead, we measured interference by within-class and between-
class list length effects. We found interference due to adding other
pairs of the same type to the study list but no interference from
other pairs of a different type and consequently no interference
from other items that were presented in those pairs. For example,
WF and WW pairs both contain words. The lack of cross-talk
between these pairs implies that words from WW pairs do not
contribute to the memory decision for a WF pair and vice versa. In
the current experiments, we used a different paradigm that allows
repetitions of particular items (token repetition) and thus allows
stronger conclusions about the presence or absence of cross-talk
between different types of pairs. The critical data come from
repeating an identical item in the same or different type of pair. On
the basis of the representational assumptions outlined in Criss and
Shiffrin (2004b), we expected to find an interaction such that
performance is affected when item repetitions occur in the same
type of pair but no change in performance when an identical item
is studied in a different type of pair. In the following experiments,
participants studied two lists with some items and some pairs
repeating in both lists. For one group of participants (Experiment
1), all item repetitions occurred in the same type of pair, and for
the other group (Experiment 2), all item repetitions occurred in a
different type of pair. During the surprise AR test that followed,
participants were asked to accept pairs studied on the most recent
list and reject all others.

Experiment 1

Method

Participants. Eighty-one people from the Indiana University commu-
nity participated in the experiment in exchange for partial course credit or
$7.00 per hour.

Materials. Black and white photographs of faces were selected pri-
marily from college yearbooks and from the Olivetti Research Database of
Faces (American Telephone & Telegraph, 1994). Each of the 210 faces
was standardized so that the head orientation, level of the eyes, and
position of the chin were identical and there was very little (if any)

! Note that the most recent version of TODAM (Murdock, 1997; Mur-
dock & Kahana, 1993) assumes that context is not used for an AR decision
and that the memory vector contains stored traces at the beginning of the
experiment. In combination, these assumptions produce no forgetting for
pairs. Earlier versions of TODAM (Murdock, 1982) did produce forgetting
of pairs because of interference from other study trials. Thus, TODAM can
either predict no interference for pairs using the most recent set of assump-
tions or it can predict interference, but it cannot predict both patterns
simultaneously.
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background. The 476 words varied in environmental frequency (M =
18.49, SD = 24.32 ; range = 1-245; Kucera & Francis, 1967) and were
ranked low on imageability (M = 341.69, SD = 43.12; range = 129-400;
Coltheart, 1981). The set of words did not include any words that might
describe a face, a person, or a characteristic of either.

Procedure. Participants received two study lists separated by an un-
filled break of approximately 120 s. The first study list contained 52 pairs
of items and the second contained 60 pairs. On each trial of each list,
participants had 3 s during which they performed an incidental task that
involved rating each pair on the following question: “Do these two items
go together?” Each study trial was separated by a 500-ms interstimulus
interval. Following the final study list, participants were engaged in a 45-s
math task before beginning an unexpected memory test. Prior to this 72
trial test list, participants were given examples of possible types of targets
and foils and instructed to say “old” only to intact pairs from List 2 and to
say “new” to all other pairs. Note that the above details are identical for
Experiments 1 and 2, including the instructions (i.e., the example targets
and foils provided to the participants were identical even if only a subset
was actually tested for that participant).

Design. Both List 1 and List 2 contained all WF pairs, thus we denote
this the same condition because items are repeated in pairs of the same type
across lists. List 2 was composed of an equal number of pairs from each of
the following conditions: studied only on the second list (List 2 condition),
studied in exactly the same pair on Lists 1 and 2 (Lists 1 and 2 exact
condition), and items studied on Lists 1 and 2 but in different pairs (Lists
1 and 2 recombined condition).> The test list was composed of 12 intact
pairs (targets) and 8 rearranged pairs (foils) from each of these three
conditions, with the foils comprised of two items studied on the second list
in the respective condition but in different pairs from that condition.
Twelve additional foils were constructed by testing pairs from List 1. Six
of these were an exact match to a pair studied during List 1 but were foils
because they were not studied on List 2 (List 1 intact condition). The other
six were constructed by making a rearranged pair from items that were only
presented on List 1 (List 1 rearranged condition). The participants could
correctly classify these foils as new because the items were not on List 2
or because they were not presented together. Table 1 contains an example
of each condition. Studied pairs were always presented side-by-side and
test pairs were always presented one above the other with no relationship
between the study and test position.

Results

A repeated measures analysis of variance (ANOVA) was con-
ducted on the hit rates (HRs) and on the false alarm rates (FARSs)

Table 1
An Example of Each Study and Test Condition for Experiment 1

Study List 1 Study List 2 Test pair Condition label

8 hue 8 hue (target) List 2
9 plea 9 hue (foil)

3 toil 3 myth 3 myth (target)  Lists 1 and 2 recombined

4 myth 7 toil 7 myth (foil)

7 watt

11 bonus 11 bonus 11 bonus (target) Lists 1 and 2 exact

12 fare 12 fare 12 bonus (foil)

5 assist 5 civil (foil) List 1 rearranged

6 civil

2 cache 2 cache (foil) List 1 intact

Note. Numbers refer to faces in the actual experiment. In the actual
experiment, no item would be repeated during test (as is illustrated here
simply to conserve space).
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with study condition as the within-subjects factor. All ANOVAs
are repeated measures and all post hoc tests are Bonferroni ad-
justed unless otherwise stated. There was a main effect of study
condition on the HRs, F(2, 158) = 25.40, MSE = .001, p < .001,
and post hoc tests confirmed the order apparent in Figure 1.
Namely, the HR was highest for the List 1 and 2 exact condition
(M = .680, SEM = .023) followed by Lists 1 and 2 recombined
condition (M = .595, SEM = .024), followed by the List 2
condition (M = .520, SEM = .025). There was also a main effect
of study condition on the FARs, F(4, 316) = 16.392, MSE = .030,
p < .001. FARs in those conditions where items appeared in both
lists were higher than the FARs to rearranged pairs constructed
from items that appeared on a single list. However, there was no
difference in FARs to those foils constructed from repeated items
(List 1 and 2 exact, M = .259, SEM = .025; Lists 1 and 2
recombined, M = .277, SEM = .028). Similarly, FARs to those
rearranged foils whose items appeared on only one study list,
either List 1 only (M = .171, SEM = .021) or List 2 only (M =
184, SEM = .021) did not differ. FARs to intact pairs from List 1
were numerically greater than FARs for any other condition (M =
362, SEM = .026), however according to Bonferroni tests, the List
1 intact FAR differed from all conditions except List 1 and 2
recombined.

In summary, when items in an AR test pair had been presented
in the same type of pair in a prior study list, participants were more
willing to call the test pair “old” than if the items had been studied
only once. The additional tendency to say “old” to pairs containing
repeated items was approximately the same for targets (.075) and
foils (.093). When test items were presented in an identical pair on
both lists, the increase in the HR (.16) was much greater than the
increase in the FAR (.082), suggesting that encoding of a pair
improves with repetition. Intact foils from List 1 had a very high
FAR, indicating a difficulty in list discrimination for AR, as is
typical in single item recognition. Experiment 2 contrasts these
findings to the case where items are repeated in a different type of
pair.

Experiment 2

Method

Participants.  Fifty-eight people from the Indiana University commu-
nity participated in the experiment in exchange for partial course credit or
$7.00 per hour.

Materials. The materials were identical to those of Experiment 1.

Procedure. The procedure was identical to that of Experiment 1.

2 The construction of the Lists 1 and 2 recombined study pairs differed
between subjects for both Experiments 1 and 2. Assume the pairs AB, CD,
EF, GH, and so forth were studied in List 1. For one group, two resulting
recombined pairs would be AD and CB. That is, both items from two
studied pairs in List 1 were recombined to form two studied pairs in List
2. For the other group, an item from one studied pair could be paired with
any item from another pair except that there were no cases of type of
pairing described above. There was no main effect of the type of recom-
bined pair and this variable did not interact with any other variables in
either experiment. Thus, the data are presented collapsed over this variable.
Because we found no difference between the two methods for recombining
study pairs, only the method of random selection was used for Experiments
3 and 4.
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Figure 1.
Design. List 1 contained 26 WW and 26 FF pairs. The 60 List 2 pairs,

all WF, contained a subset of those conditions found in Experiment 1
because of the constraint that a pair could not be repeated exactly on List
2, given that List 2 did not contain the same type of pairs as List 1. When
an item was repeated, it occurred in a different type of pair that the initial
presentation; this is referred to as the different condition. An equal number
of List 2 study pairs came from each of the following conditions: studied
only on List 2 and items studied on Lists 1 and 2 but in different pairs (Lists
1 and 2 recombined condition). The test list contained 18 intact pairs
(targets) and 12 rearranged pairs (foils) from the two conditions described
above. In addition, 12 foils were constructed by making a rearranged pair
from items that were only presented on List 1 (List 1 rearranged condition).
These foils could be called “new” either because the individual items were
not presented on List 2 or because the items were not presented together.
Table 2 contains an example of each condition.

Results

HRs and FARs are pictured in Figure 2. The HRs for the List 2
condition (M = .533, SEM = .028) and Lists 1 and 2 recombined

Table 2
An Example of Each Study and Test Condition for Experiment 2
Study Study
List 1 List 2 Test pair Condition label
7 taper 7 taper (target)  List 2
8 crisis 8 taper (foil)
12 1 deed 1 deed (target)  Lists 1 and 2 recombined
34 3 pious 3 deed (foil)

lessen deed

outset pious

56 5 array (foil)
neutral array

List 1 rearranged

Note. Numbers refer to faces in the actual experiment. In the actual
experiment no item would be repeated during test (as is illustrated here
simply to conserve space).

conditions (M = .570, SEM = .029) did not differ, F(1, 56) =
2.649, MSE = .015, p = .109. FARs differed by study condition,
F(2,112) = 10.701, MSE = .015, p < .001. Both conditions that
contained items from List 2 had similar FARs (for List 1 and 2
recombined, M = .228, SEM = .023; for List 2, M = 222, SEM =
.020) and they were both greater than the FAR to List 1 rearranged
foils (M = .137, SEM = .018).

Comparison of Experiments I and 2

We have noted that when single items are repeated in the same
type of pair, participants are more willing to call the resulting test
pairs “old” regardless of their actual status (i.e., Experiment 1).
However, when item repetitions occur in a different type of pair,
we see little to no contribution of the repetitions (i.e., Experiment
2). To draw stronger conclusions about this interaction, we now
directly compare the corresponding conditions of the two experi-
ments. A 2 X 2 X 2 mixed designs ANOVA was computed with
experimental group as the between-subjects factor and condition
(List 1 and 2 recombined and List 2) and test type (target or foil)
as the within-subject factors. To confirm the individual analyses,
we should find an interaction between experimental group and
condition such that the probability of calling and item “old”
[P(old)] is greater for the List 1 and 2 recombined condition
relative to the List 2 condition when the items repeat in the same
type of pair (Experiment 1) but not when items repetitions occur in
a different pair type (Experiment 2). Indeed, we do find this
interaction between experimental group and condition, F(1,
137) = 9.803, MSE = .022, p = .002. In addition, we find main
effects such that P(old) was higher to targets than foils and to the
List 1 and 2 recombined condition than the List 2 condition: F(1,
137) = 306.999, MSE = .048, p < .001, and F(1, 137) = 16.458,
MSE = .022, p < .001, respectively. No other interactions were
significant, nor was there a main effect of experimental group (all
Fs <1 and ps > .334).
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Discussion of Experiments 1 and 2

The important difference between the same condition (Experi-
ments 1) and the different condition (Experiment 2) is the type of
pair presented on List 1. In the same condition, both Lists 1 and 2
contained the same type of pairs (i.e., WF pairs). In the different
condition List 1 contained WW and FF pairs, whereas List 2
contained WF pairs. For both targets and foils, seeing the individ-
ual items on a previous list in the same type of pair enticed
participants to call the test pair “old” more often compared with
the case in which items were presented only on List 2. When items
were repeated in a different type of pair, it was almost as if List 1
never occurred, as we saw little change in performance. This is
consistent with our previous findings showing a list length effect
within, but not between, pair types and with models where differ-
ent pair types are coded with dissimilar and nonoverlapping rep-
resentations. The tendency to call a pair “old” more often if the
items comprising the pair have been repeated is not without
precedent. Dyne, Humphreys, Bain and Pike (1990) had partici-
pants study a single list of pairs where items repeated between
pairs (all WW pairs). Like us, they found an increase in P(old) for
AR (they also report no change in d-prime). They showed that a
number of models predicted this pattern because pairs with re-
peated items are more familiar, the increase in familiarity being the
same for intact target and rearranged foil pairs. This finding
appears to be limited to the case in which item repetitions occur in
the same type of pair.

Experiments 3 and 4

In the models proposed in Criss and Shiffrin (2004b), we as-
sumed that single item and pair representations differed. This was
based in part on two empirical findings: Performance in single-
item recognition was determined by the total length of the list and

not the relative number of pairs of each type, and the overall level
of accuracy for the different pair types did not predict the level of
accuracy for single items. However, in the original discussion of
these issues, we did not specify the relationship between the
features identifying the pairs and those identifying the singles from
which they were constructed. One could imagine a model in which
the pair type biases the encoding of the single item to include those
features relevant to the studied pair. For example, previous studies
have shown that the encoding of the word jam is different when
studied in the pair strawberry jam than when studied in the pair
traffic jam indicating an item encoding that is specific to the pair
in which it was studied, at least when the items are related
pre-experimentally (e.g., Light & Carter-Sobell, 1970; Tulving &
Thompson, 1973).

Strengthening some study items via spaced repetition typically
results in a different pattern of performance for free recall and
recognition. A positive list-strength effect, defined as a decrement
in performance for the nonstrengthened items compared with a list
in which all items are of equal strength, occurs for free recall but
a null or negative list-strength effect occurs for single-item recog-
nition (Ratcliff, Clark, & Shiffrin, 1990; Shiffrin, Ratcliff, &
Clark, 1990). This was modeled by assuming that item repetitions
result in differentiation, thereby reducing interference (i.e.,
strengthening items makes them less similar to other items). Mur-
nane and Shiffrin (1991) asked if differentiation of single items
occurs when items were repeated within sentences. In one condi-
tion, whole sentences repeated. In another, each individual sen-
tence occurred just once, but each sentence was constructed from
words that repeated in other sentences. There were various testing
conditions but single item recognition proves to be the most
relevant for the current discussion. When strengthening was ac-
complished by repeating a whole sentence, a null or negative
list-strength effect was found, replicating earlier results in which
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single items were studied. On the other hand, when strengthening
was accomplished by rearranging the repeated words into different
sentences, a positive list-strength effect was obtained (even though
the same words were repeated the same number of times for each
of the conditions described). In the resulting model, they assumed
that the encoding of individual words is biased by its surroundings
such that a word repeated in three different sentences acts func-
tionally as three different words, preventing differentiation. Ap-
parently, a word repeated in the same sentence acts as the same
word each time, producing differentiation and making that stored
word less similar to other studied words.

The two studies just described assume that the encoding of a
single item is biased by the surrounding context. Such explanations
may be contrasted with models assuming an emergent set of
features for associations and a relatively stable representation for
singletons. These models allow different qualitative patterns of
prediction for tests involving single items and some combination
of items because the tasks are based on different sets of features
(associative or single item) containing different information. The
results of the following studies allow us to better understand which
of these assumptions is most appropriate as we continue to develop
the model proposed in Criss and Shiffrin (2004b) and described
later in this article. The study conditions of these experiments are
identical to Experiments 1 and 2, but participants are given an
unexpected single-item recognition test following study. In Exper-
iment 3, single items are repeated in the same type of pair across
lists, and in Experiment 4 single items are repeated in a different
type of pair.

Experiment 3

Method

Participants. Twenty-five people from the Indiana University commu-
nity participated in the experiment in exchange for partial course credit or
$7.00 per hour.

Materials. The materials were identical to those of Experiment 1.

Procedure. Participants received two study lists separated by an un-
filled break of at least 120 s. The first study list contained 52 pairs of items
and the second contained 60 pairs. On each trial of each list, participants
had 3 s during which they performed an incidental task that involved rating
each pair on the following question: “Do these two items go together?”
Each study trial was separated by a 500-ms interstimulus interval. Follow-
ing the final study list, participants were engaged in a 45-s math task before
beginning an unexpected memory test consisting of 120 single items
presented one at a time. Participants were instructed to respond with “old”
only if the single item had been studied on List 2.

Design. The study lists were constructed just as those in Experiment 1.
The test list consisted of 120 trials, half words and half faces. The targets
consisted of an equal number of words and faces from each of the three
study conditions: List 2, Lists 1 and 2 recombined, and Lists 1 and 2 exact.
The foils consisted of six faces from List 1, six words from List 1, and 48
items (half faces and half words) that were not previously studied.

Results

A 2 X 3 (item type and study condition) ANOVA was con-
ducted on the HRs. HRs were higher for faces than words, F(1,
24) = 5.932, MSE = .042, p = .023. There was a main effect of
study condition, F(2, 48) = 15.880, MSE = .026, p < .001, and no
interaction between the two, F(2, 48) = 0.092, MSE = .020, p =
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.912. Post hoc analyses confirm what is shown in Figure 3, Panel
A—namely, that HRs for items presented on Lists 1 and 2 (M =
606, SEM = .037, for the exact condition, and M = .642, SEM =
.037, for the recombined condition) are both greater than the HR
for items presented only on List 2 (M = .470, SEM = .035) but do
not differ from one another.

A 2 X 2 (item type and foil type) ANOVA conducted on the
FARs showed higher FARs for faces than words, F(1, 24) =
7.236, MSE = .027, p = .013. False alarms to those items pre-
sented on List 1 (M = .280, SEM = .029) were much higher than
false alarms to new items (M = .111, SEM = .016), F(1, 24) =
26.504, MSE = .027, p < .001, and there was no interaction
between item type and foil type F(1, 24) = 0.082, MSE = .026,
p = .777. Figure 3, Panel A shows the hits and false alarms
collapsed over item type. For a breakdown by item type, see Table 3.

Experiment 4

Method

Participants. Twenty-five people from the Indiana University commu-
nity participated in the experiment in exchange for partial course credit or
$7.00 per hour.

Materials. The materials were identical to those of Experiment 1.

Procedure. The procedure was identical to that of Experiment 3.

Design. The study lists were constructed just as those in Experiment 2.
The test list consisted of 120 trials, half words and half faces. The targets
consisted of an equal number of words and faces from the List 2 and Lists
1 and 2 recombined conditions. The foils consisted of six faces from List
1, six words from List 1, and 48 items (half faces and half words) that were
not previously studied.

Results

A 2 X 2 (item type and study condition) ANOVA was con-
ducted on the HRs. The HR to items presented on both Lists 1 and
2 (M = .667, SEM = .035) was much higher than the HR to items
presented only on List 2 (M = .535, SEM = .031), F(1, 24) =
22.246, MSE = .020, p < .001. There was no main effect of item
type and no interaction between the two variables, F(1, 24) =
1.090, MSE = .030, p = .307, and F(1, 24) = 0.189, MSE = .012,
p = .6068, respectively).

A 2 X 2 (item type and foil type) ANOVA was conducted on the
FARs. FARs to items presented on List 1 (M = .353, SEM = .044)
were greater than the FARs to new items (M = .120, SEM = .022),
F(1,24) = 42.86, MSE = .032, p < .001. There was no difference
between FARs to words and faces though the effect approached
statistical significance, F(1, 24) = 3.349, MSE = .019, p = .080,
and there was no interaction between the two variables, F(1, 24) =
0.729, MSE = .019, p = .402. Figure 3, Panel B shows the hit and
false alarms collapsed over item type. For a breakdown by item
type, see Table 4.

Comparison of Experiments 3 and 4

Observation of Figure 3 along with the individual statistical
analyses from Experiments 3 and 4 both indicate the same pattern
of results for single item recognition regardless of whether the
single items are repeated in the same or different type of pair. Here
we directly compare the corresponding conditions of the two



LIST DISCRIMINATION IN ASSOCIATIVE RECOGNITION

1205

A 1.0 [ List2
) 7 Lists 1 & 2 Exact
tz72 Lists 1 & 2 Recombined
I List 1
0.8 1 [ITD New
O  Model Predictions
o)

06 i '
=) 0 7
9 T
o 1L

0.4 4

0.2

%

0O =
B.)

0.8

T
Q

0.6
= T
\!é O
o

0.4 -

0.2

0.0

Targets Foils

Figure 3. The probability of calling a test item old [P(old)]as a function of the type of test item. Panel A shows
the data from Experiment 3 (repetitions in the same pair type) and Panel B shows the data from Experiment 4
(repetitions in a different pair type). Error bars represent one standard error above and one below the mean. Open
circles represent the fit of the REM model described in the text.

experiments. A 2 X 2 X 2 mixed designs ANOVA was computed
for the HR and the FAR. In both cases, experimental group was the
between-subjects factor and condition (List 2 and List 1 and 2
recombined) and item type (faces and words) were the within-
subject factors. Those items studied on both lists have a higher HR
than those studied only on List 2, F(1, 48) = 43.477, MSE = .027,
p < .001). We found an interaction between item type and exper-
iment due to the higher HR for faces than words in Experiment 3
but not in Experiment 4. Given that the total number of studied
faces and words is equal for the two groups, there is no obvious
reason for this pattern of data, and it is simply attributed to
idiosyncratic difference between groups of participants. There
were no other main effects or interactions for targets (all Fs <

1.097 and all ps > .300). Words have lower FARs than faces, F(1,
48) = 10.494, MSE = .023, p = .002, and items that were never
studied have lower FARs than items presented on the first list, F(1,
48) = 68.940, MSE = .029, p < .001. There were no other main
effects or interactions for foils (all Fs < 1.752 and all ps > .192).
Thus, as expected given the individual analyses, we found the
same pattern of data for single-item recognition regardless of
whether item repetitions occurs in the same or different type of
pair. In particular, we found that targets presented on both lists
were more likely to be called “old” than were targets studied only
on the second list. Likewise, foils studied on the first list were
more likely to be called “old” than were foils that were never
studied during the experiment.
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Table 3
Hit Rates and False Alarm Rates as a Function of Item Type for
Single Item Recognition in Experiment 3

Condition Faces Words
Hit rate
List 2 .504 (.043) 436 (.041)
Lists 1 and 2 recombined .688 (.042) .596 (.044)
Lists 1 and 2 exact .648 (.040) .564 (.049)
False alarm rate
List 1 .320 (.047) .240 (.036)
New .160 (.025) .062 (.014)

Note. Standard errors of the mean are listed in parentheses.

Discussion of Experiments 3 and 4

In summary, we found the same pattern of data for single-item
testing regardless of whether items were repeated in the same or
different type of pair. This result contrasts with the pattern found
for associative recognition, in which repetitions of the same type
shape performance, suggesting that single items are stored in a
similar fashion regardless of the type of pair in which they were
encoded. The current conclusions also differ from those of Mur-
nane and Shiffrin (1991), who showed a positive list strength effect
for single words repeated in different sentences but a typical null
list strength effect for words repeated in the same sentences. They
proposed that a word studied in different sentences acts as a
different word each time, with a meaning biased by the sentence
context. They noted an unpublished study, using pairs of words
rather than five-word sentences, that failed to find a similar pat-
tern. Murnane and Shiffrin suggested that a sentence places more
constraints on the meaning of the constituent words than a pair,
thus biasing the encoding in a stronger way than study of a pair.
Thus, though our results differ from that of Murnane and Shiffrin,
the differences may be due to the differing constraints imposed by
sentence contexts versus pair contexts. We reserve further tests of
this hypothesis for future studies.

A REM Model for Three-Phase Associative and
Single-Item Recognition

We now describe the model first suggested by Criss and Shiffrin
(2004b), and show that this model successfully predicts the pat-
terns of data found in Experiments 1-4 both qualitatively and
quantitatively. Criss and Shiffrin (2004b) proposed a representa-
tional schema that could be added to nearly any extant model to
accommodate different classes of pairs. In the following model, we
implemented one of those representations within the REM model
which was first proposed for single item and associative recogni-
tion by Shiffrin and Steyvers (1997, 1998). Further, we specified
the relationship between associative features and the single items
from which they were created. Finally, we also implemented an
assumption suggested in Criss and Shiffrin (2004b) to account for
the Kelley and Wixted (2001) data and used it to successfully
account for list discrimination in AR.

According to the REM model, each study trial results in the storage
of a memory trace that contains several sets of features. In the original
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conception, memory traces contained features describing the item and
features describing the current environmental and internal context.
Study of a pair simply resulted in two sets of item features stored in
the same memory trace. However, this concatenation assumption was
challenged by the set of data described here and in Criss and Shiffrin
(2004b). Such results raise the possibility that encoding of WF, FF,
and WW pairs results in dissimilar associative information, despite
the fact that pairs might share single items of the same type. We
propose that this associative information manifests in two ways. First,
following Murdock (1982), we allow the storage of associative fea-
tures, a unique set of features generated on the fly for each pair, that
are independent of single item features (cf. Clark & Gronlund, 1996;
Dosher & Rosedale, 1997; Hockley & Cristi, 1996b; Kahana, 2002).
Under this assumption, the associative features resulting from AB are
no more similar to AD than to EF, despite the shared single item.
Likewise, the single item features for A are only similar to the
associative features of AB by chance. This assumption allows quali-
tatively different patterns of results for singles and pairs, but does not
produce the functional independence of the three different types of
pairs. Second, we allow for a set of type code features so that each
class of pairs can be accessed more or less separately from the others.
We consider the type code to be analogous to a category cue, a class
attribute (cf. Galbraith, 1975; Underwood, 1969), or set designating
features (cf. Shiffrin & Steyvers, 1997). As Underwood illustrated,
when attempting to generate a technical term, one does not generate
the name of a colleague, and when recalling CVC strings, one does
not generate a known five-letter word. A more empirically based
example of such a process is found in studies of the fan effect in which
participants were asked to verify facts about different categories.
Response time in these tasks depends on the number of categories and
the number of facts within the category being tested, but not the
number of facts learned about irrelevant categories (Anderson &
Paulson, 1978; McCloskey & Bigler, 1980; Reder & Anderson,
1980). Thus, intuitively and empirically, there is evidence that partic-
ipants are able to limit the memory search to a particular subset of
memory given sufficient cues. We assume that the type code is such
a cue. Though Underwood assumed this type of cue could be used
strategically by the participant or when instructed by the experi-
menter, we assume the type code is used when available. For exam-
ple, during AR the type of pair is obvious, thus the type code is used.
However, in other tasks in which the probe consists of only a single
item, such as single item recognition or free recall, the type of pair that
is relevant for the task is not obvious, thus it is not adaptive to use a

Table 4
Hit Rates and False Alarm Rates as a Function of Item Type for
Single Item Recognition in Experiment 4

Condition Faces Words
Hit rate
List 2 512 (.039) .557 (.037)
Lists 1 and 2 recombined .653 (.040) .680 (.037)
False alarm rate
List 1 .367 (.050) .340 (.050)
New 157 (.029) .083 (.020)

Note. Standard errors of the mean are listed in parentheses.
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type code on the basis of pair type. Whether or not participants can
use a type code when explicitly instructed to do so is a topic left for
future research.

As just described, study of a pair under instructions emphasizing
associative encoding results in the storage of item, context, asso-
ciative, and type code features. Whether or not these features
contribute to the memory decision depends on the type of test
employed. For example, when probed with a single item (as in
Experiments 3 and 4 or in a recall task), the type code and
associative features are not available and thus presumably do not
contribute to the retrieval and decision process. Thus, single item
recognition proceeds just as described in Criss and Shiffrin
(2004a): Item and context features of the test probe are compared
with the same type of features in each memory trace, resulting in
a likelihood value that each memory trace resulted from study of
the test probe. The likelihoods are combined into a single value
indicating the overall familiarity of the test probe and a decision is
based on that value. The fit to the set of single item data shown in
Figure 3 required no modification to the model.

Now consider associative recognition. AR differs from single item
recognition in the types of probes used during retrieval. Following
Murdock (1997), we assume context features are not an effective cue
for an AR task. We therefore assume these are not used. Likewise, for
the following reason, the familiarity of the single items in the test
probe is ignored: In a standard AR paradigm, using single-item
familiarity as a basis for a memory decision can only harm perfor-
mance, as all individual items were studied and are familiar. Thus, in
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our AR model the retrieval processes and memory decision are based
on the type code features used to restrict comparisons to the relevant
subset of memory and on the match between stored associative
features and those generated from the pair of test items.

However, there are AR studies in which consideration of single-
item familiarity is adaptive. In Criss and Shiffrin (2004b), we
pointed out that under certain conditions, participants may adopt a
strategy of using single item familiarity to help reject foils. Spe-
cifically, we suggested that such a strategy may be used when
context information and/or single item familiarity is useful for the
task, such as in Kelley and Wixted (2001). In their paradigm,
participants were tested with intact and rearranged test pairs as
well as foils constructed from two unstudied items. They found
that the FAR for unstudied foils fell below the FAR to rearranged
foils (among other manipulations and findings). We suggested that
their participants used single item familiarity to augment their AR
decisions as follows: If both singles were judged to be new then
the pair would be called “new,” otherwise the judgment would be
based on associative features alone. We assume participants
adopted the same retrieval strategy to perform list discrimination
in the current experiments. In summary and as illustrated in Figure
4, we assumed that the initial probe with type code features
restricts further comparisons to a relevant subset of memory. Then
single item and associative features are compared with those traces
in this activated set. If both singles are rejected, then the pair is
called “new,” otherwise a decision is based on the match between

[ WF type code ]

Get Activated Set

[ associative features ]

If cbassocia!ive > criterion

If q)associative < criterion

[ Word features
[ Face features

W type code
F type code

Context ]
Context ]

/

e}

new

Consider Single Items

If both e < criterion

If both ey, > criterion

% 3%

new

“old”

Figure 4. A schematic of the retrieval processes involved in the model used to generate the fits depicted in
Figures 1, 2, and 3. See the text for a detailed description of the model. W = word; F = face.
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the associative features of the probe and those stored in memory
traces in the activated set.

The model predictions, shown as white circles in Figures 1, 2,
and 3, are quite close to the observations with no major deviations,
despite the limited parameter search and the constraint that all
parameter values excluding one were identical for all four groups.
In a likelihood based model such as REM, the optimal criterion is
defined as the point of indifference where the test probe is equally
likely to have come from a studied item as it is to have been an
unstudied item. To maximize percent correct, one should call all
items with an odds value exceeding this criterion “old” and all
those with a value less than this criterion “new.” To accurately fit
the current set of data, we needed to use nonoptimal criteria. In
particular, the criterion for saying “old” is more strict than optimal
for single-item testing and more lenient than optimal for AR.
Given that the similarity between the two study lists (and hence the
similarity of the context features) boosts the familiarity of all items
studied on either list, it makes sense that participants would be
conservative in claiming an item was on the second study list. On
the other hand, some tested pairs will be rejected on the basis of the
familiarity of the single items (regardless of the familiarity of the
associative features), thus it seems reasonable that participants
may be slightly liberal in calling a test pair “old” on the basis of
associative features.

Further details of the model can be found in the original sources,
and details for the simulations discussed here can be found in the
Appendix. Some readers may have the impression that the assump-
tions underlying our present model are ad hoc and/or post hoc. It
is noteworthy, therefore, that the model used here was suggested in
Criss and Shiffrin (2004b) before the present data were collected
as a plausible way to accommodate both the within-class but not
between-class list length effects and Kelley and Wixted’s (2001)
data. This model is applied here to a quite different paradigm and
yet fits with high accuracy. Good fit notwithstanding, we admit
that variants of the specifics of this model are possible. We suspect
that all such variants would have to incorporate some form of
dissimilar representation for different pair types. For example,
recall the persistence in encoding hypothesis prevalent in the
paired associate literature, according to which a repeated item
tends to be encoded in a way that is consistent with its last
encounter. In the present paradigm, one might assume that persis-
tence in encoding only occurs when an item is repeated in the same
type of pair. Such an assumption would attribute our findings to a
mechanism during encoding rather than a retrieval strategy as
adopted in the current model.

Studies measuring receiver operating characteristics and deci-
sion time suggest that AR may be carried out via a search process
(e.g., Nobel & Shiffrin, 2001; Rotello & Heit, 2000; Rotello,
Macmillan, & VanTassel, 2000; Yonelinas, 1997; but see Gron-
lund & Ratcliff, 1989). Why then did we adopt a familiarity-based
model? In part, we did so because the present results did not allow
us to distinguish a familiarity-based decision from one based on an
elaborative search process, thus we chose to implement the simpler
familiarity process. However, some details of the data suggest that
a strategy of successively using each individual test item to recall
its studied partner is not the underlying process. For example, one
might expect a recall model to predict lower HRs for the Lists 1
and 2 recombined condition compared with the List 2 condition
because of competition between the two study partners in the

CRISS AND SHIFFRIN

former case. In other words, a recall-to-accept strategy should be
less successful for the Lists 1 and 2 recombined condition because
of interference. Similarly, one might expect a lower FAR for the
List 1 and 2 exact condition because of a greater ability to recall
the correct study partner given that the exact pair was studied twice
compared with either condition in which pairs were studied just
once (e.g., List 2) or studied twice with different partners (e.g.,
Lists 1 and 2 recombined). That is, a recall-to-reject strategy
should be relatively more successful for the Lists 1 and 2 exact
condition. Of course, the exact predictions depend on the particular
model implementation. Critically, any such search model would
require different representational similarity for different pair types
to account for the interaction between the same versus different
AR conditions This idea is, of course, the main point of this article.

We should also consider further the assumption that context
plays no role in AR. Though supported by studies showing no
forgetting for pairs relative to singles over a moderate range of
study—test lags (Hockley, 1992; Hockley & Consoli, 1999), this
assumption sounds a bit extreme. It seems likely that context
features are part of the AR probe but play a less important role for
various reasons including limited capacity and lack of necessity.
This line of thinking does not imply, however, that one can simply
generate an alternative to the present model in which context
features are used in the associative probe as a replacement for the
assumption that single-item familiarity is used in decisions. Recall
that representations for a pair and its constituent single items are
assumed to be independently generated; thus, the familiarity of the
single items does not affect the familiarity of the associative
features. For this reason, an alternative model of the type just
described predicts an approximately equal FAR for rearranged
pairs regardless of the number of times or lists on which the
individual single items were studied. Because the context features
used in a probe are identical on each test trial, they add a constant
amount of evidence to the decision regardless of the type of
rearranged foil. For the same reason, this alternative model pre-
dicts an approximately equivalent HR for all pairs that were
presented only on List 2 (i.e., the List 2 and Lists 1 and 2
recombined conditions), regardless of whether the single items
comprising the pair were studied on the first list. These predictions
do not agree with our data. Thus, though some readers may think
it logical and intuitive to include context features in the associative
probe, it would not allow the model to better predict the observed
pattern of data.

Thus, to predict our data, we were led to the incorporation of
single item familiarity. For example, whereas the Lists 1 and 2
exact condition has a higher HR than the other conditions because
of the inclusion of associative features from both study lists, the
List 2 HR is lower than the Lists 1 and 2 recombined HR because
of the occasions on which both single items in the List 2 condition
are determined to be new and the pair is rejected. This outcome is
more likely for List 2 pairs than Lists 1 and 2 recombined (or
exact) pairs because each item was studied only once in the former
case. Similarly, the FARs to pairs containing items studied once
(i.e., List 1 and List 2) are lower than FARSs to pairs containing
items studied twice (i.e., Lists 1 and 2 exact and recombined)
because of the once presented items being rejected more often than
twice presented items. The use of context in an associative probe
would primarily serve to reduce the FAR to intact pairs studied on
the first list, allowing a concrete test of the assumption. Suppose
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List 1 contains pair AD and List 2 contains pairs AB and CD. The
test pair AD (given the same instructions used here, to say “old”
only to List 2 pairs) should have a FAR approximately equal to the
HR of an intact pair studied on List 2. According to the model, if
both singles are judged “new” then the pair is rejected, otherwise
the decision is based on the associative features. In this case, both
single items A and D were studied on List 2, so the decision will
likely be based on the associative features. The pair AD was
studied on List 1 and, without using context features in the probe,
the associative features alone will likely result in an “old” decision.

In summary, no extant models are able to account for the results
of this study and the data presented in Criss and Shiffrin (2004b)
without additional assumptions. The co-occurrence models cannot
account for the current set of data because we find a qualitatively
different pattern of results for AR and single item recognition. The
emergent feature assumption of composite models has been sup-
ported here and adopted in our own model. However, composite
models in the form that they exist presently cannot handle our data.
These models combine all memory traces into a single vector,
causing all memory traces to contribute to the decision for each
other. Because we find larger effects in AR when the item repe-
titions occur in the same type of pair and list length effects
restricted to pairs of the same type, composite models would also
require an assumption that similarity differs between different pair
types. This is accomplished in the present model by adopting a
type code. Without the type code, all associative features would
participate in the decision and the model would predict a similar
pattern of data regardless of whether repetitions occurred in the
same or different type of pair. Also, some composite models (e.g.,
TODAM) share the assumption that context is not part of the probe
for AR testing and thus predict approximately equivalent FAR for
all rearranged foil types and approximately equivalent HR for
those intact pairs studied once. Though we do not consider all
possible search models, the details of the data suggest that a
recall-to-reject or a recall-to-accept strategy using single items as
probes is not sufficient. Thus, it seems that to account for the
current set of data and the list length findings of Criss and Shiffrin
(2004b), extant models require mechanisms allowing pairs to be
selectively involved in the decision process depending on the type
of pair being tested and to allow differential interference for probes
of pairs compared with singles. We used type codes and emergent
associative features in the REM framework as an example of how
one could extend a model to fit this set of data.

Summary

In a paradigm in which items were studied on multiple lists, we
have shown that changes in memory performance on a subsequent
associative recognition task depend on the type of pair in which the
repeated items were studied. We found a large increase in P(old)
for both targets and foils when items were repeated across lists in
the same type of pair, but not when repetitions occurred in differ-
ent types of pairs. In contrast, performance on a single item
recognition task is not subject to such pair-type dependencies. This
data was well fit by a model assuming that participants adopt a
strategy of using single-item familiarity to help make a list dis-
crimination decision in AR. In particular, if the stored features for
both single items indicate that neither was studied on the relevant
study list, the pair is called “new” regardless of the familiarity of
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the associative features. Otherwise, the AR decision is based
strictly on the familiarity of the associative features.
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Appendix

Details of the REM Model

During each trial of a study list, a memory trace is stored in the form of
a matrix. Each memory trace contains features describing the current
context, each item, the emergent association between the two items, and the
type code indicating what type of pair was studied. REM assumes that
features differ in their environmental base rates and thus diagnosticity. This
is implemented by independently generating each feature according to a
geometric distribution with parameter g as follows:

PV=j) = (1-¢g/'g )

where V refers to the feature being generated and j refers to some specific
feature value (j =1, 2, 3, and so forth). We let 15 features represent each
part of the vector listed above and set g = .40. Because of imperfect
encoding, only some of the available features are stored in the memory
trace. In particular, each stimulus feature is stored with some probability,
u, otherwise a zero is stored indicating a lack of information. Given that a
feature is stored, the correct value is copied with some probability, ¢ = .90,
otherwise a random value is drawn from the same geometric distribution
and stored. It seemed natural to assume that associative features require
more effort than single-item features to generate and to store. We therefore
allowed one value of u for associative features, u = .20, and
another for all remaining features with u = .32.

Though context likely changes on a trial by trial basis as a function of
random fluctuation (Estes, 1955; Mensink & Raaijmakers, 1989) and/or
other studied items (Howard & Kahana, 2001), we use the standard
simplifying assumption that context features are fixed during a single study
list (cf, Klein, Criss, & Shiffrin, 2004). The current experimental design
contains two study lists that are relatively similar both in time and in the
encoding task being performed. Thus, we assume the context features are
correlated across the two lists. In particular, List 1 context features are
selected randomly from the specified geometric distribution. Then List 2
context features are generated by copying each of the List 1 features with
some probability, p.,, = .70, and randomly selecting new values from the
geometric distribution otherwise.

Individual items are only randomly similar to one another and to their
respective association(s). If a study pair contains repeated items, the same
set of features are used to store both single item repetitions regardless of
pair type. However, the associative features for the two study pairs (as-
suming the pairs are different as in the Lists 1 and 2 recombined study
condition) are generated independently and are similar only by chance. For
repetitions of pairs (as in the List 1 and 2 exact study condition) the same
associative and the same item features are used during storage. The type
code is simply implemented as a set of feature values that is identical for
pairs of the same type and only randomly similar to pairs of a different
type. One might wish to allow for similarity between type codes (e.g., WF
and WW type codes might be similar by virtue of sharing a word).
However, in Criss and Shiffrin (2004b), we found a similar lack of
interference between all three pair types regardless of the surface similarity
and thus do not build in any similarity between type codes. All of the
features just described are presumably encoded during the study of a pair
under instructions encouraging associative encoding. Whether or not each
set of features contributes to the memory decision depends on the type of
test employed, as described in the main text. Likewise if the encoding
instructions emphasize singletons, fewer associative features (if any) might
be stored (e.g., Begg, 1978; Criss, 2005; Hockley & Cristi, 1996a; McGee,
1980).

Single item testing proceeds just as described in Criss and Shiffrin
(2004a). Memory is probed with the item features for the current test
stimulus and the List 2 context features (because the task requires an “old”
response only to List 2 items). These are compared to each stored memory
trace, denoted by 7, and a matching value is calculated as a likelihood ratio

associative

for the match between the probe and each trace. For the item features, a
likelihood value is calculated for a memory trace i in the following way:

1= [ — o)~ 17 wim
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where niq is the number of nonzero mismatching single item features and
njim is the number of matching single item features with the value j.
Features stored as zeros are ignored as they represent a lack of information.
Because this likelihood is based on item features alone, it is termed A,; and
it gives the degree to which the memory trace matches the probe in item
information. In parallel, memory is probed with the relevant context
features. Another likelihood value, A, is calculated by comparing the
relevant context features (e.g., List 2) with the context features stored in
each trace using Equation 2. In this case, nig is the number of nonzero
mismatching context features and njim is the number of matching context
features with the value j. The term A, gives the degree to which the probe
matches in context information and is based on context features alone. A
recognition test requires that the probe match both item and context
information, so the two likelihood values must be combined appropriately.
As proposed in Criss and Shiffrin (2004a), we combine the two using a
weighting parameter, «, that allows the system to differentially weight item
or context information as follows:

1
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where ¢ is the odds that the test item was studied in the relevant context
and N is the number of memory traces contributing to the decision. If the
odds value is greater than some criterion, the item is called “old,” otherwise
it is called “new.” If « = 1, all decision noise comes from the item features
and the context features are ignored and vice versa. As it turns out, a value
of a = .50 was used for the current simulations, implying an equal
weighting of item and context information. For single item testing, it was
necessary to use a criterion of 1.5 indicating that participants were con-
servative and only claimed an item was studied if it was very familiar. The
fit to the set of single item data shown in Figure 3 required no modification
to the original model. In our simulations, the number of features and the
values of ¢, g, and « are fixed as specified above. The values of u, p,,, and
the criterion were adjusted to produce a good fit to the overall level of
performance.

Figure 4 illustrates the decision process in an AR task when the test
probe is a WF pair. First, the type code features are used to probe memory,
and a likelihood value for each memory trace is computed via Equation 2
where nig is the number of nonzero mismatching type code features and
njim is the number of matching type code features with the value j. Any
trace with a likelihood value equal to or greater than some threshold, 7 =
1, are considered part of the activated set and are compared with the
remaining probes. Note that because of error at encoding, it is possible for
pairs of a different type to be mistakenly included in and pairs of the same
type to be excluded from the activated set.

Next, associative features for the test pair are generated and compared
with the associative features stored in traces contained in the activated set.
The comparisons are computed via Equation 2, where niq is the number of
nonzero mismatching associative features and njim is the number of
matching associative features with the value j. The resulting likelihood
ratios, A;, give the degree to which each memory trace matches the test
probe in associative features. The associative activations are combined by
the following equation into an odds, ¢, ociaive:

(Appendix continues)



1212

1
Dusiane =y 2N “)

Even for associative tests, we assume that the familiarity of single items
is automatically computed using Equations 2 and 3, resulting in an odds
value, ¢;.,,, for each individual item. (Note that the familiarity of the
single item is based on the match between the probe and those traces in the
activated set. Hence, not all memory traces are included. In particular, the
activated set tends to contain traces that resulted from study of the type of
pair being tested—WF in the example in Figure 4.) As discussed in the
main text, the single item familiarity is only used when adaptive given the
task at hand, such as the case here. Assume therefore that participants given
a list discrimination AR test follow the retrieval route suggested above and
have available for decisions ¢, o ciaive fOr the test pair and ¢, for each
individual item in the test pair. If both single items are judged to be new
(using for each a default optimal criterion of one for the odds), the pair is
called “new.” If either of the items is judged to be “old,” the AR decision

CRISS AND SHIFFRIN

is completely determined by ¢, ociaive- W adopted a criterion of 0.9,
indicating that participants were somewhat generous in calling pairs “old,”
perhaps sensible given that most pairs containing items from List 1 were
presumably rejected based on the single item odds.

No parameters were allowed to vary between the same and different
groups. The criteria varied between the groups tested with single items or
pairs and the probability of encoding a feature (i.e., u) was lower for
associative features than all other features. Fits were not completely opti-
mized, but the fitting process was stopped when a reasonable fit was found.
The model predictions, shown as white circles in Figures 1, 2, and 3 are
quite close to the observed values, despite the limited parameter search and
the constraint that all parameter values excluding one (e.g., the criterion)
were identical for all four groups.
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