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In differentiation models, the processes of encoding and retrieval produce an increase in the distribution
of memory strength for targets and a decrease in the distribution of memory strength for foils as the
amount of encoding increases. This produces an increase in the hit rate and decrease in the false-alarm
rate for a strongly encoded compared with a weakly encoded list, consistent with empirical data. Other
models assume that the foil distribution is unaffected by encoding manipulations or the foil distribution
increases as a function of target strength. They account for the empirical data by adopting a stricter
criterion for strongly encoded lists relative to weakly encoded lists. The differentiation and criterion shift
explanations have been difficult to discriminate with accuracy measures alone. In this article, reaction
time distributions and accuracy measures are collected in a list-strength paradigm and in a response bias
paradigm in which the proportion of test items that are targets is manipulated. Diffusion model analyses
showed that encoding strength is primarily accounted for by changes in the rate of accumulation of
evidence (i.e., drift rate) for both targets and foils and manipulating the proportion of targets is primarily
accounted for by changes in response bias (i.e., starting point). The diffusion model analyses is
interpreted in terms of predictions of the differentiation models in which subjective memory strength is
mapped directly onto drift rate and criterion placement is mapped onto starting point. Criterion shift
models require at least 2 types of shifts to account for these findings.
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Recognition memory experiments ask participants to endorse
target items that were studied on an earlier list and reject foil items
that were not studied. Manipulations that improve recognition
memory accuracy often do so via a mirror effect: the simultaneous
increase in the probability of correctly endorsing a target item (hit
rate, or HR) and decrease in the probability of erroneously endors-
ing a foil item (false-alarm rate, or FAR; e.g., Glanzer & Adams,
1990). Stretch and Wixted (1998) delineated two classes of mirror
effects: stimulus based and strength based.

Stimulus-Based Mirror Effects

One example of a stimulus-based mirror effect is the word
frequency mirror effect (WFME) wherein words of low environ-
mental frequency (LF) have higher HRs and lower FARs than
words of high environmental frequency (HF). The WFME contin-
ues to be the center of much debate, as it has been attributed to
several underlying mechanisms (e.g., Dennis & Humphreys, 2001;

Glanzer & Adams, 1990; Malmberg & Nelson, 2003; McClelland
& Chappell, 1998; Reder et al., 2000; Shiffrin & Steyvers, 1997).
Though accounts of the WFME vary at the conceptual level and in
the details, most share the assumption that the WFME is a function
of properties of the stimuli themselves. Studies have also demon-
strated mirror effects based on other stimulus properties such as
letter frequency, orthographic neighborhood size, neighborhood
density, and pictures versus words (Criss & Malmberg, 2008;
Glanc & Greene, 2007; Glanzer & Adams, 1985; Heathcote,
Ditton, & Mitchell, 2006).

Strength-Based Mirror Effects

In contrast, the strength-based mirror effect (SBME) arises not
from properties of the stimuli but from encoding conditions. For
example, HRs are higher and FARs are lower for study lists in
which accuracy is improved by increasing study time (e.g., Rat-
cliff, Clark, & Shiffrin, 1990; Stretch & Wixted, 1998). Higher
HRs for targets from a strongly encoded list compared with a
weakly encoded list are predicted by all models. Of greater theo-
retical interest is why the FAR differs between the strong and weak
lists. This is puzzling because there are no differences between
weak and strong foils other than encoding conditions, and foils, by
definition, are not presented for encoding. Two possible explana-
tions have been explored in detail in the literature and are consid-
ered here (the criterion shift assumption and differentiation); dis-
cussion of other possibilities is reserved for the General
Discussion.
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The Criterion Shift Assumption

The criterion shift assumption is a metacognitive strategy
wherein participants become aware that memory accuracy for a
strong list is very high either during encoding or during the initial
test trials (e.g., Hirshman, 1995; Stretch & Wixted, 1998; Verde &
Rotello, 2007) and adopt a stringent criterion based on this knowl-
edge, much like participants adopt a strict criterion when they are
informed that the majority of test items will be foils (e.g., Rotello,
Macmillan, Hicks, & Hautus, 2006). Use of a stricter criterion
reduces the FAR. Thus, the reduction in FAR for a strong relative
to a weak list is accounted for by a more lenient criterion for the
weak list. This assumption is adopted by models from two classes:
global matching models in which a stronger study list results in
higher variability and thus a higher FAR following a strong than a
weak list (see Shiffrin, Ratcliff, & Clark, 1990) and those models
that assume the subjective strength of unrelated foils is not affected
by strength of the encoded list (e.g., Cary & Reder, 2003; Stretch
& Wixted, 1998; Verde & Rotello, 2007). The latter class of
models is referred to as fixed-strength models (illustrated in
Figure 1). Fixed-strength models follow from an early constraint
on signal detection theory (e.g., Lockhart & Murdock, 1970; Parks,
1966) in which the foil distribution was assumed to be constant
across all encoding conditions. This assumption was initially
adopted as a simple convenience and was justified by attributing
subjective memory strength to the preexperimental familiarity of

the foil item. Thus, manipulations of the history of the foil (e.g.,
word frequency) but not encoding conditions (e.g., study time)
were assumed to affect the subjective memory strength of foils.
The fixed-strength assumption has persisted over decades and is no
longer considered a mere convenience. In fact, this assumption has
been incorporated in a number of single- and dual-process theories
of memory.

Differentiation Models

Differentiation models were developed in part to account for the
null list-strength effect and the WFME (Criss & McClelland, 2006;
McClelland & Chappell, 1998; Shiffrin et al., 1990; Shiffrin &
Steyvers, 1997). Differentiation models predict an SBME in the
distributions of subjective memory strength, as shown in Figure 2,
for the same reason they produce the null list-strength effect,
though this went largely unnoticed in the SBME literature until
recently. Two critical properties of the differentiation models
underlie the SBME (Criss, 2006). The first is that repetition of an
item results in updating the single memory trace for that item,
resulting in a more accurate representation of the target with each
encoding opportunity. The more accurate the memory trace, the
better it matches its corresponding target presented during a mem-
ory test and the less well it matches any unrelated item presented
during test. The second critical feature is that the models consider
positive evidence when a feature matches and negative evidence
when a feature mismatches. When traces stored in episodic mem-
ory are relatively complete (e.g., following a strong list), there is
more negative evidence for an unrelated foil than when the traces
are relatively incomplete (e.g., following a weak list). For these
reasons, the distribution of subjective memory strength increases
for targets and simultaneously decreases for foils following a
strong list compared with a weak list. This prediction of the
differentiation models follows directly from the encoding (i.e.,
memory traces are updated with repetition) and retrieval (i.e., the
decision rule in which mismatching features decrease the subjec-
tive memory strength) assumptions. In fact, disrupting the encod-
ing assumptions by storing a new memory trace with each repeti-
tion rather than updating a single memory trace for each item
disrupts the SBME predictions (i.e., in this case the FARs for a
strong list are higher than FARs for a weak list; see Criss, 2006, for
relevant data and retrieving effectively from memory [REM]
model simulations and Murnane & Shiffrin, 1991, for relevant data
and a global matching model perspective). Differentiation models
(like all models) require a criterion for endorsing a test item as
“studied” or “not studied.” There are many circumstances when
the criterion changes (e.g., Criss, 2009; Xu & Malmberg, 2007).
However, to account for the basic SBME, the placement of the
criterion need not vary.

The differentiation models attribute the SBME to the encoding
and decision processes inherent in the episodic memory system,
whereas the other models under consideration attribute the SBME
to a criterion shift based on metacognitive assessment. These two
explanations are fundamentally different, at least in principle. In
practice they have been difficult to discriminate with HRs and
FARs. The goal of the current article was to take a more compre-
hensive look at data from the SBME paradigm by collecting both
accuracy and reaction time (RT) measures. This full set of data is
used to evaluate how additional encoding time influences the

foils
weak targets

Subjective Memory Strength

foils
strong targets
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Figure 1. An illustration of the models used by Stretch and Wixted
(1998) to account for the strength-based mirror effect in (A) a weak list and
(B) a strong list. The mean of the target distribution is greater for a strong
than a weak list. The mean of the foil distribution is constant for strong and
weak lists (the fixed-strength assumption). The criterion (the vertical line)
changes between the two lists, producing the strength-based mirror effect.
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distribution of subjective strength for foils and changes in criterion
placement.

The Ratcliff Diffusion Model (RDM)

To do this, the RDM shown in Figure 3 (Ratcliff, 1978; Ratcliff
& McKoon, 2008) is employed. The RDM has been applied to a
wide range of tasks in which one of two possible decisions is made
in a relatively short period. In the model, presentation of a stimulus
triggers the sequential sampling and accumulation of evidence
until sufficient evidence is gathered to support one of two re-
sponses. The rate at which evidence accumulates is governed by
the drift rate parameter, which is normally distributed across trials
with a mean v and variance �. Mean drift rate is determined by the
quality of evidence provided by the stimulus. When the quality of
evidence is high, the absolute value of the drift rate is high, and
responses are both fast and accurate. When the quality of evidence
is poor, the absolute value of the drift rate is small, and responses
are both slower and less accurate. For example, in a recognition
memory task the quality of evidence is determined by subjective
memory strength (e.g., the match between the test word and
episodic memory; Ratcliff, 1978; Ratcliff, Thapar, & McKoon,
2004). The separation between the response boundaries is gov-
erned by the a parameter. For convenience the lower boundary

(“not studied” in a recognition memory task) is set to zero, and the
upper boundary is denoted a. Speed–accuracy trade-offs are mod-
eled by changes in the boundary separation. Wider boundaries
result in longer but more accurate decisions than narrow bound-
aries. For a fixed-boundary separation, the point at which the
decision process begins to accumulate evidence is determined by
the starting point parameter, which varies across trials according to
a uniform distribution with mean z and range sz such that 0 � z �
sz � z � sz � a. Prior to stimulus presentation, participants may
be biased toward one of the response options based on incentives,
instructions, or personal preference. This response bias is modeled
by the mean starting point (Edwards, 1965; Voss, Rothermund, &
Voss, 2004; Wagenmakers, Ratcliff, Gomez, & McKoon, 2008;
but see Diederich & Busemeyer, 2006). Note that starting point
does not affect the accumulation of evidence, and vice versa, much
like response criterion and subjective memory strength are often
assumed to be independent in signal detection theory. The time to
encode the stimulus and execute a motor response, called nonde-
cision time, is modeled by a uniform distribution with mean Ter

and range st.
One additional parameter, the drift criterion (also called the zero

point of the drift rate), provides the criterion value of drift rate
above which evidence accumulates toward the upper boundary and
below which evidence accumulates toward the lower boundary
(Ratcliff, 1978, 1981, 1985, 1987; Ratcliff, VanZandt, & McKoon,
1999). The effective rate of accumulation is the drift rate of the
stimulus (i.e., memory strength) minus the drift criterion. This
parameter is rarely discussed and in fact is not mentioned in the
three published RDM toolboxes (Vandekerckhove & Tuerlinckx,
2007, 2008; Voss & Voss, 2007; Wagenmakers, van der Maas, &
Grasman, 2007). There are at least three likely reasons that this
parameter has been underinvestigated. First, it is almost always set
equal to zero, and so positive drift rates accumulate toward one
boundary, and negative drift rates accumulate toward the opposite
boundary. Second, the drift criterion and drift rate mimic each
other in predictions of both accuracy and RT distribution, and it is
difficult to identify the two parameters separately (Ratcliff &
McKoon, 2008). Third, it is not entirely clear what psychological
or experimental factors should influence the drift criterion; it is
unclear what factors produce a response bias that affects how
information is accumulated (but for some evidence in nonmemory
tasks, see Diederich & Busemeyer, 2006; Ratcliff, 1985; Ratcliff et
al., 1999).

foils 
weak targets 

Subjective Memory Strength

foils 
strong targets 

A

B

Figure 2. Simulated distributions of a differentiation model (retrieving
effectively from memory; Shiffrin & Steyvers, 1997) for targets and foils
following study of (A) a weak list and (B) a strong list. Differentiation
increases the mean of the target distribution and decreases the mean of the
foil distribution for strong lists relative to weak lists. The criterion need not
change across lists to account for the strength-based mirror effect. For
clarity of illustration, the plotted distributions are the log of the decision
variable. In the actual model, the decision is based on the untransformed
value.

Figure 3. An illustration of Ratcliff’s (1978) diffusion model.
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Response Bias

A common empirical method for eliciting response bias is to
manipulate payoffs or the prior probability of a target. As just
noted, there are three ways to characterize bias in the diffusion
model—changes in the starting point (z), boundary separation (a),
or drift criterion—and all have been informally described as anal-
ogous to the criterion in signal detection theory (e.g., Ratcliff &
McKoon, 2008; Wagenmakers et al., 2008, 2007). Both starting
point and drift criterion can produce similar changes in the prob-
ability of endorsing an item as studied—P(“studied”)—but they
differ in how RT distributions are affected (see Ratcliff &
McKoon, 2008, for a thorough discussion of this). An unbiased
starting point is located at the midpoint of the boundary separation
(e.g., z � a/2). If the starting point is biased such that it is closer
to the “studied” boundary, then “studied” responses are more
likely to occur and are faster, and “not studied” responses are less
likely to occur and are slower, and this is true for both correct and
incorrect decisions. Ratcliff and McKoon (2008) reported that
changes in the starting point affect the tail and leading edge of the
distribution by a 2:1 ratio with typical parameters; thus, the biased
RT distribution appears shifted relative to the unbiased distribu-
tion. In contrast, typical changes in the drift rate (or the drift
criterion) produce a 4:1 ratio for correct responses, spreading the
tail of the biased distribution relative to the unbiased distribution.

Experiment 1 makes use of a classic manipulation of response
bias, changing the probability of a target appearing on the test list,
and asks whether this is better characterized by changes in the
starting point, which is independent of the accumulation of evi-
dence, or by changes in the drift criterion, which directly influ-
ences the manner in which the system processes evidence provided
by the stimulus. Some have suggested that drift criterion may be
adjusted based on payoffs or prior probabilities of the stimuli
(Ratcliff, 1987, p. 279; Ratcliff et al., 1999, Experiment 1),
whereas others have demonstrated that payoffs or priors alter
starting point (Voss et al., 2004; Wagenmakers et al., 2008).
Finally, Diederich (2008; Diederich & Busemeyer, 2006) suggests
that both starting point and drift criterion are influenced by payoffs
and stimulus probabilities depending on fluctuations in attention
under time pressure. None of these experiments employ a recog-
nition memory task.

Ratcliff and Smith (2004) manipulated the prior probabilities of
targets in a recognition memory experiment with the goal of
evaluating four sequential sampling models. Though they did not
explicitly seek to evaluate a starting point versus drift criterion
diffusion model (e.g., they let both freely vary for all conditions),
they reported that a single drift criterion for all conditions provided
a sufficient fit to the data. Thus, there is tentative support that a
response bias manipulation in recognition memory is better char-
acterized by changes in starting point. In Experiment 1, I sought to
test whether changes in the starting point or drift criterion better
account for change in behavior as a function of the relative
proportion of targets on the test list.

Experiment 1

Participants studied a list of items and then provided a binary
decision for targets and foils in a recognition memory test that
followed. The proportion of test items that were targets was

manipulated. The literature suggests that HRs and FARs will
increase in step with the proportion of targets on the test list (e.g.,
Criss, 2009; Rotello et al., 2006). RT distributions and response
probabilities were used conjointly to discriminate between models
in which response bias does and does not interact with evidence
accumulation.

Method

Participants. Nineteen members of the Syracuse University
subject pool participated to fulfill course requirements.

Stimulus materials. The word pool consisted of 2,150 words
between 4 and 11 letters in length and between 0.69 and 13.25 log
frequency (M � 8.46) in the hyperspace analog to language corpus
(Balota et al., 2002).1

Design. The experiment was divided into two sessions, each
consisting of 10 study–test blocks. A brief break between each
study–test block indicated that a new block was beginning.
Each study list consisted of 50 unique words presented a single
time for 1.5 s with a 750-ms interstimulus interval. Each test list
consisted of 50 items with a 750-ms interstimulus interval between
trials. The construction of the test list varied between the two
sessions, with condition randomly assigned to session for each
subject. During one session, 35 targets and 15 foils were tested on
each list, labeled the “biased-to-say-studied” condition. During the
other session, 35 foils and 15 targets were tested on each list,
labeled the “biased-to-say-not-studied” condition. Participants
were accurately informed about the nature of the test lists. During
the memory test, participants were instructed to place the left index
finger on the C key (labeled “no”) and the right index finger on the
M key (labeled “yes”) and maintain that placement during the
entire set of test trials. Participants were informed that their RT
was being measured and were asked to respond as quickly as
possible to the question “Was this word on the list you just
studied?” without sacrificing accuracy. For each participant, words
were randomly assigned to condition, and no item was presented
on more than one list throughout the four sessions. The experiment
was conducted with the Psychophysics Toolbox in MATLAB
(Brainard, 1997).

Results and Discussion

All participants completed all sessions for a total of 1,000
responses as follows: 350 target and 150 foil observations in the
biased-to-say-studied condition and 150 target and 350 foil obser-
vations in the biased-to-say-not-studied condition. Two partici-
pants were eliminated for performing at chance (HR–FAR was less
than .02), and one was eliminated for producing almost no FARs
(less than .04 in each condition), which prevented model analysis.
All analyses of variance (ANOVAs) are repeated measures unless
otherwise noted.

Accuracy. As obvious in Figure 4, the bias manipulation was
effective. A 2 (type of test item) � 2 (bias condition) ANOVA
demonstrated main effects of item type and bias condition. Targets
were called “studied” more often than foils, F(1, 15) � 89.19, p �

1 For comparison, the words were between 11 and 49 (M � 21.60) per
million in Kučera and Francis (1967).
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.001, MSE � .029. Test items were called “studied” more often in
the bias-to-say-studied condition than the bias-to-say-not-studied
condition, F(1, 15) � 23.41, p � .001, MSE � .023. There was no
interaction between the two variables, F(1, 15) � 0.063, p � .805,
MSE � .011.

RT. In a quantile probability plot, RT quantiles are plotted as
a function of the probability of a response, allowing the simulta-
neous observation of both speed and accuracy. Figure 5A shows
such a plot for this experiment. The left panel displays foil trials,
and the right panel displays target trials. Gray symbols refer to the
bias-to-say-studied condition, and the white symbols refer to the
bias-to-say-not-studied condition. Circles represent incorrect re-
sponses (FARs in the left panel and misses in the right panel), and
triangles represent correct responses (correct rejections in the left
panel and HRs in the right panel). The .1, .3, .5, .7, and .9 RT
quantiles are plotted vertically for each condition (e.g., the middle
point represents the median RT, the lowest point represents the RT
below which only 10% of responses lie, and the uppermost point
represents the RT above which 10% of responses fall) The location
of each RT distribution along the x-axis is determined by the
average probability correct for that condition.

The effect of bias condition on response probability is obvious
in Figure 5A. In the left panel, gray circles are plotted to the right
of white circles, indicating higher FARs for the bias-to-say-studied
condition. Similarly, in the right panel, gray triangles are to the
right of white triangles, indicating a higher HR in the bias-to-say-
studied condition. The difference between the RT distributions for
the two bias conditions appears to be a shift in the distributions,
affecting both the fastest and slowest responses to targets and foils
to a similar degree. Specifically, the more common response is
faster for each condition, and the less common response is slower.
The diffusion model takes into account changes in response prob-
ability and RT and provides explanations for these observed
changes in terms of cognitive processes.

Diffusion model analysis. Participants occasionally respond
very fast or very slow presumably because of lapses in attention or
fast guesses. These outliers and contaminants distort calculations
of the mean and standard deviation of RT (and distort the recov-
ered parameters of the RDM) and should be eliminated from the

data or explicitly modeled when possible (e.g., Ratcliff, 1993;
Ratcliff & Tuerlinckx, 2002). Outliers were eliminated prior to
analysis. Ninety-four responses (0.59%) exceeding 3 s and 996
responses (6.23%) faster than 300 ms were eliminated.2

The best fitting model was selected with Akaike information
criterion with a finite sample correction (AICc) and Bayesian
information criterion (BIC), which take into account not only the
accuracy of the fit but also the number of free parameters used to
obtain that fit (e.g., Akaike, 1978, 1979; Burnham & Anderson,
2002). AICc and BIC values for a set of models can be transformed
into Akaike weights and BIC model weights, respectively, which
can be interpreted as the probability that the model is the best
model among the set under consideration (Wagenmakers & Far-
rell, 2004). These model selection techniques are useful but are
limited in that they consider only number of parameters as a
measure of complexity and neglect functional form (see Myung,
2000, for a review of this issue). Further, the penalty for number
of parameters is harsher for BIC than AICc, which sometimes
creates conflicting model selection results.

For each participant for each of the eight conditions (the facto-
rial combination of bias condition, target or foil, and response), the
.10, .30, .50, .70, and .90 RT quantiles were computed. Quantiles
were averaged across participant, and the average data were fit by
minimizing chi-square with the Diffusion Model Analysis Toolbox
(Vandekerckhove & Tuerlinckx, 2007, 2008).3

Two models were fit to the data. In the drift criterion model,
the drift rate was fit as follows: Target and foil drift rates were
allowed to vary freely with the constraint that the difference
between the target and foil drift rates was constant across
condition (i.e., vtarget, bias-to-say-studied � vfoil, bias-to-say-studied �
vtarget, bias-to-say-not-studied � vfoil, bias-to-say-not-studied). Drift cri-
terion is the difference between the corresponding drift rates in each
condition (e.g., vtarget, bias-to-say-studied � vtarget, bias-to-say-not-studied). All
other parameters were held constant across condition, and the
starting point was fixed at the midpoint of the response bound-
aries.4 In the starting point model the drift rate was allowed to
differ for targets and foils (and these values were identical for
both bias conditions), and the starting point was allowed to vary
across bias conditions. Table 1 reports AICc and the Akaike
weights and BIC and BIC model weights (e.g., Akaike, 1978,
1979; Burnham & Anderson, 2002; Wagenmakers & Farrell,
2004) for the two models, and both agree that the starting point
model fits the group data better. The best fitting parameter
values for the starting point model are reported in Table 2, and

2 For both Experiments 1 and 2, several cut points for fast RTs were
adopted including no cut point, 200 ms, and 300 ms. The cut point made
no difference in the model selection results for 84% of the participants.
When cut point did change model selection results, it was frequently due
to inconclusive model selection with no cut point. To maintain consistency
with the recognition memory RT literature (e.g., Ratcliff, Thapar, &
McKoon, 2004), I report fits using 300 ms as the cut point.

3 In addition, I conducted fits to quantile distributions using the multi-
nomial likelihood loss function (S. Brown & Heathcote, 2003; Heathcote &
Brown, 2004; Heathcote, Brown, & Mewhort, 2002). The parameter values
were similar and the qualitative pattern of results for critical parameters
were identical.

4 A drift criterion model with starting point fixed across condition but
not constrained to the midpoint did not fare any better.
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Figure 4. Accuracy data for Experiment 1. Error bars represent one
standard error above and one below the mean.
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they are as expected: The starting point for the bias-to-say-
studied condition is higher (closer to the “studied” boundary)
than the starting point for the bias-to-say-not-studied condition.
The two models were also fit to individual participants. Overall,

13 participants were best fit by the starting point model, two
were best fit by the drift criterion model, and one was incon-
clusive (AICc favored the starting point model, but BIC model
weights were nearly equal, .53 for the drift criterion and .47 for
the starting point model). The mean of the parameters for the
starting point model across individual fits are similar to those
obtained by fitting the group data as can be seen in Table 2.

AICc and BIC indicate that the starting point model better
captures the quantitative details of the data. Inspection of simu-
lated data suggests that the drift criterion model fails to capture the
differences between bias conditions in the leading edge of the RT
distribution. Figure 5B shows simulated data generated by a start-
ing point model, and Figure 5C shows simulated data generated by
a drift criterion model. Five thousand simulated trials were run for
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Figure 5. (A) The empirical reaction time distributions for Experiment 1, (B) predictions from a starting point
model (with parameters from the left column of Table 3 excluding drift criterion, which was set to zero), and
(C) predictions from a drift criterion model (with parameters from the group values in Table 3 excluding starting
point, which was set to .06815).

Table 1
Model Selection Values for Group Data in Experiment 1

Model AICc wi(AICc) BIC wi(BIC)

Starting point 68232 1.00 68301 1.00
Drift criterion 68571 0.00 68632 0.00

Note. AICc � Akaike information criterion with a finite sample correc-
tion; BIC � Bayesian information criterion.
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each model. All parameters, excluding the drift criterion and
starting point, were held constant for the two models at values
reported in the left column of Table 3 (which correspond to the
best fitting mixed model, allowing both drift criterion and starting
point to vary across bias condition; see Mixed Model section). For
the starting point model predictions, drift criterion was set to
zero. For the drift criterion model predictions, starting point
was set to the average (.06815). A biased starting point in-
creases the probability of giving the response nearest the start-
ing point and increases the speed of that response. At the same
time, the competing response is less likely and slower. Changes
in the starting point shift the RT distribution, and this is obvious
at both the fastest and slowest quantiles (e.g., compare the
adjacent white and gray symbols in Figure 5B). In contrast,
changes in the functional drift rate via a nonzero drift criterion
increase the speed and accuracy of correct responses by spread-
ing the distribution rather than shifting the distribution. This is
especially obvious in the tail of the distribution (i.e., slowest
responses) where the favored response is faster than the non-
favored response. Differences in the leading edge (i.e., fastest
responses) are negligible. The empirical data, shown in Figure
5A, show pronounced changes in both the tail of the distribution
and the leading edge, consistent with a starting point model.

Mixed model. It is plausible that both drift criterion and
starting point vary with the proportion of targets on the test list.
As just illustrated, the starting point alone captures the quali-
tative pattern and quantitative details of the empirical data very
well. Nevertheless, allowing the drift criterion to vary provides
more flexibility to fit the specific quantitative details, and
therefore a mixed model will always fit at least as well as or
better than the simpler, nested model and is therefore of little
use in model selection. For the group data, the mixed model is
preferred over the starting point or drift criterion model (see
Table 4). The starting point parameters in the mixed model
follow the same pattern (closer to the “studied” boundary for
the bias-to-say-studied condition) as the starting point model.
The drift criterion parameter shifts the target drift rate higher
and the foil drift rate lower in absolute value for the bias-to-
say-studied condition relative to the other condition (see best
fitting parameters in Table 3). In contrast to the group data, for
the majority of participants, the starting point model is pre-
ferred (N � 9). Only three individuals are best fit by a mixed
model, another three are inconclusive, and one is best fit by a
drift criterion model. The parameter values for the group fit and
the average value over individual fits are very close with the
exception of the drift criterion. The drift criterion for the group
data is more than double the value obtained by averaging over
individual fits, likely due to the needless use of the parameter
(at least for nine of the participants).

Figure 6 plots the fits of both the starting point model (denoted
with X) and the mixed model (denoted with �) for comparison.
The starting point model provides a very good fit to the data, and
most predicted values fall within two standard errors of the
data. The improvement in fit provided by the mixed model is
small in magnitude and can be characterized as a very slight
exaggeration of P (“studied”) differences between bias condi-
tions. For RT, the mixed model slightly counteracts the effect of
starting point on error responses; that is, the favored response is
slightly slower for errors in each condition under the mixed
model, and the competing response is slightly faster (compared
with the starting point model). In summary, support for the
mixed model is inconsistent. Group data favor the mixed model,
but individual participant data do not. The starting point must
vary between bias conditions to account for the qualitative

Table 2
Best Fitting Parameters of the Starting Point Model for Data
From Experiment 1

Parameter Interpretation
Value

(group data)
Mean value

(individual fits)

Ter mean nondecision time 0.5109 0.4988
st range of nondecision time 0.2166 0.2317
a boundary separation 0.1291 0.1368
sz range of starting point 0.0811 0.0704
� variance of the drift rate 0.1593 0.1819
vtarget drift rate for targets 0.1171 0.1372
vfoil drift rate for foils �0.1635 �0.1847
zBSS starting point for bias-to-

say-studied lists
0.0787 0.0834

zBSNS starting point for bias-to-
say-not-studied lists

0.0492 0.0526

Note. BSS � bias-to-say-studied; BSNS � bias-to-say-not-studied.

Table 3
Best Fitting Parameters of the Mixed Model to Data From Experiment 1

Parameter Interpretation
Value

(group data)
Mean value

(individual fits)

Ter mean nondecision time 0.5172 0.4990
st range of nondecision time 0.2192 0.2270
a boundary separation 0.1376 0.1406
sz range of starting point 0.1000 0.0811
� variance of the drift rate 0.2125 0.1956
vtarget drift rate for targets in bias-to-say-not-studied lists 0.1097 0.1402
vfoil drift rate for foils bias-to-say-not-studied lists �0.2161 �0.1875
Drift criterion constant added to the target and foil drift rates for the

bias-to-say-studied lists
0.0509 0.0209

zBSS starting point for bias-to-say-studied lists 0.0816 0.0832
zBSNS starting point for bias-to-say-not-studied lists 0.0547 0.0557

Note. BSS � bias-to-say-studied; BSNS � bias-to-say-not-studied.
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pattern of data, especially changes in the leading edge of the RT
distributions. Allowing the drift criterion to vary in addition to
the starting point improves small quantitative details of the fit,
at least to the group data.

The goal of this experiment was to determine whether manip-
ulating the proportion of targets tested, a classic bias manipulation
in recognition memory, influences the accumulation of evidence or
the starting point of the decision process. The data offer strong
support for the latter in the form of changes in the starting point,
consistent with the findings of Ratcliff and Smith (2004). Includ-
ing changes in drift criterion improves small quantitative details in
the group data. In the next experiment, list strength is manipulated,
and the question of interest is whether the SBME is due to changes
in the starting point or evidence accumulation.

Experiment 2

In Experiment 2, participants studied a list of items and then
provided a binary decision for targets and foils in a recognition
memory test that followed. Word frequency and list strength were
orthogonally manipulated and should result in a simultaneous
SBME and WFME for P (“studied”). Word frequency serves as a
point of comparison with previous studies, which have demon-

strated that the effect of word frequency is best described by
differences in drift rate (e.g., Ratcliff et al., 2004). The critical data
are the RT distributions for list strength and whether they are best
described by changes in the drift rate or starting point in the RDM.

The memory models under consideration differ in criterion
and/or the mean of the subjective memory strength, as seen in
Figures 1 and 2. The differentiation models predict an increase in
subjective memory strength for targets and a decrease in subjective
memory strength for foils as a function of list strength with a fixed
criterion across condition. Within the RDM, the mean of the
memory strength distributions are interpreted as mean drift rates,
and the fixed criterion is interpreted as a fixed starting point.

Interpreting the criterion shift models in the RDM is slightly
more complicated, as there are at least two reasonable possibilities.
One interpretation is that the mean of the memory strength distri-
butions are analogous to the mean drift rates and the location of the
criterion is analogous to the starting point. This interpretation is
consistent with Experiment 1 and Ratcliff & Smith (2004), in
which behavioral response bias maps onto starting point in the
diffusion model. A second possibility is that criterion changes
following a strength manipulation are qualitatively different from
criterion changes following a manipulation of stimulus probabili-
ties. Whereas changes in stimulus probability (i.e., such as in
Experiment 1) are best described by changes in starting point,
criterion changes following a strength manipulation are best inter-
preted as changes in the drift criterion. A change in the drift
criterion between strong and weak lists means that the encoding
conditions for the targets determine how evidence is accumulated
during test.

Applying the RDM to data from the SBME paradigm allows for
an unambiguous test between differentiation models and starting
point version of the criterion shift model. However, the differen-
tiation model and the drift criterion version of the criterion shift
model cannot be discriminated because the drift rate and drift

Table 4
Model Selection Values Including a Mixed Model for Group
Data in Experiment 1

Model AICc wi(AICc) BIC wi(BIC)

Mixed 68199 1.00 68275 1.00
Starting point 68232 0.00 68301 0.00
Drift criterion 68571 0.00 68632 0.00

Note. AICc � Akaike information criterion with a finite sample correc-
tion; BIC � Bayesian information criterion.
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Figure 6. The empirical reaction time distributions for Experiment 1 and fits from the best fitting starting point
(corresponding parameters in the left column of Table 2) and mixed model (corresponding parameters in the left
column of Table 3). Error bars are standard errors of the mean.
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criterion mimic each other in terms of both accuracy and RT
predictions.

Method

Participants. Sixteen members of the Syracuse University
community participated for $10/hr.

Stimulus materials. The word pool consisted of 800 LF and
800 HF words between 4 and 11 letters in length. HF words ranged
between 9 and 13 log frequency (M � 10.46) in the hyperspace
analog to language corpus (Balota et al., 2002), and LF words
ranged between 3.5 and 6 log frequency (M � 5.22).5

Design. The experiment was divided into four sessions. Each
session consisted of four study–test blocks including one of each
of the following lists: strong HF, strong LF, weak HF, and weak
LF. The order of the study–test blocks was randomly assigned
anew for each participant and each session. A brief break between
each study–test block indicated that a new block was beginning.
Each study list consisted of 50 unique words. For the weak lists,
study words were presented a single time for 1.5 s with a 750-ms
interstimulus interval. For the strong lists, study words were shown
for five such presentations, and the entire set of 50 words was
presented before any word repeated. Each test list consisted of all
50 targets and 50 foil items randomly intermixed. The test was
self-paced, with a 750-ms blank screen separating each trial.
During the memory test, participants were instructed to place the
left index finger on the C key (labeled “no”) and the right index
finder on the M key (labeled “yes”) and maintain that placement
during the entire set of test trials. Participants were informed that
their RT was being measured and were asked to respond as quickly
as possible to the question “Was this word on the list you just
studied?” without sacrificing accuracy. For each participant, words
were randomly assigned to condition, and no item was presented
on more than one list throughout the four sessions. The experiment
was conducted with the Psychophysics Toolbox in MATLAB
(Brainard, 1997).

Results and Discussion

Thirteen participants completed all sessions for a total of 200
target and 200 foil observations in each condition. The other three
participants participated in three sessions each (due to failure to
show for the final session, N � 1, or loss of data from one session,
N � 2). These three participants are included in the analysis
presented below based on 150 observations per condition.

Accuracy. Separate 4 (session) � 2 (word frequency) � 2
(strength) ANOVAs showed no main effect of session and no
interaction between session and any other variable for hits (all
Fs � 1.8 and ps � .15) or false alarms (all Fs � 1.9 and ps � .13);
thus data were collapsed over session. As expected, both a WFME
and an SBME were observed (see Figure 7). Separate 2
(strength) � 2 (word frequency) ANOVAs were conducted for
HRs and FARs. LF targets had higher HRs than HF targets, F(1,
15) � 40.92, p � .001, MSE � .004, and strong targets had higher
HRs than weak targets, F(1, 15) � 83.16, p � .001, MSE � .004.
LF foils had lower FARs than HF foils, F(1, 15) � 18.40, p �
.001, MSE � .003, and foils following a strong list had lower
FARs than foils following a weak list, F(1, 15) � 19.94, p � .001,
MSE � .003. Word frequency and strength did not interact for

foils, F(1, 15) � 0.47, p � .501, MSE � .001. The benefit from
repetition was slightly larger for HF than LF targets; however, this
effect was not significant, F(1, 15) � 3.28, p � .09, MSE � .002.

RT. Figure 8 shows RT distributions for this experiment.
Figure 8A shows data for HF words, and Figure 8B shows data for
LF words. The left panels display foil trials, and the right panels
display target trials. Gray symbols refer to test items following a
weak list, and white symbols refer to test items following a strong
list. Triangles are correct response (correct rejections in the left
panels and HRs in the right panels) and circles are incorrect
responses (FARs in the left panels and misses in the right panels).
The error bars represent one standard error above and one below
the mean. The .1, .3, .5, .7, and .9 RT quantiles are plotted
vertically for each condition.

The SBME is evident in the order of the four conditions. Strong
foils are to the left of weak foils, and strong targets are to the right
of weak targets, with the exact location determined by the empir-
ical P(“studied”). The WFME is evident by comparing Figures 8A
and 8B. The LF observations in Figure 8B are more extreme along
the x-axis—targets are higher and foils are lower—than the HF
observations in Figure 8A.

The changes in RT as a function of word frequency and strength
are very similar. Word frequency primarily serves to spread out the
tail of the RT distributions; correct responses to LF words are
faster than correct responses to HF words, especially in the slower
responses for both targets and foils. Likewise, strength spreads the
tail of the RT distributions; correct responses to words following a
strong list are faster than words following a weak list for both
targets and foils. The diffusion model takes into account both
changes in response probability and RT as a function of condition
as described next.

Diffusion model analysis. Empirical RT distributions were
computed, and the diffusion model was fit with the Diffusion

5 For comparison, HF words were less than 50 per million (M � 130.66)
and LF words were between 2 and 10 per million (M � 3.31) in Kučera and
Francis (1967).
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Figure 7. Accuracy data for Experiment 2 showing word frequency and
strength-based mirror effects. Error bars represent one standard error above
and one below the mean. LF � low frequency; HF � high frequency.
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Model Analysis Toolbox in MATLAB (Vandekerckhove & Tuer-
linckx, 2007, 2008). Outliers were removed from each partici-
pant’s data prior to further analysis. Twenty-six responses (0.11%)
were slower than 3 s and 50 responses (0.20%) were faster than
300 ms, all of which were eliminated (following Ratcliff et al.,
2004; see Footnote 2).

For each participant for each of the 16 conditions (the factorial
combination of word frequency, list strength, target or foil, and
response), the .10, .30, .50, .70, and .90 quantiles of the RT
distribution were computed. The quantiles were averaged across
participant, and the two models were fit to the group data.

In both models all parameters except the drift rate and starting
point were held constant across condition. Word frequency is
treated as a stimulus-based effect and attributed to changes in the
drift rate, which is analogous to changes in the distribution of
subjective memory strength. As discussed in the introduction, this
is a common assumption shared by the majority of models and
shared by the models considered in this article (cf. Benjamin,
2003; Hoshino, 1991). The difference between the models is the

nature of the SBME. In the drift rate model, there were eight drift
rate parameters, one for HF weak targets, HF strong targets, HF
weak foils, HF strong foils, and their LF counterparts. In this
model the starting point was not free to vary but rather fixed to be
unbiased (e.g., the midpoint of the response boundaries; z � a/2).
Note that as described in the introduction to this experiment, this
drift rate model can be interpreted as a differentiation model or as
a drift criterion version of a criterion shift model. The starting
point model had six drift rate parameters, one for HF weak targets,
HF strong targets, HF foils, and their LF counterparts. In addition,
there were two starting point parameters, one for the weak lists and
one for the strong lists. AICc and the Akaike weights and BIC and
BIC model weights for each model are shown in Table 5 (e.g.,
Akaike, 1978, 1979; Burnham & Anderson, 2002; Wagenmakers
& Farrell, 2004), and both measures agree that the drift rate model
provides the best fit. The models were also fit to individual
participants. The drift rate model was favored by 11 participants
(two provided weak or moderate evidence), and the starting point
model was favored by five participants.
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Figure 8. The empirical reaction time distributions for Experiment 2 for (A) high-frequency (HF) words and
(B) low-frequency (LF) words. Parameters for the drift rate fits are in Table 6 (group values). Parameters for the
mixed model fit are in Table 8 (group values).
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The best fitting parameters for the drift rate model are reported
in Table 6. Note that parameters obtained by fitting the group data
are very similar to those obtained by fitting each participant and
averaging parameter value over participant. Positive drift rates
tend to accumulate toward the “studied” boundary, and negative
drift rates tend toward the “not studied” boundary. All target
conditions have positive values, and all foil conditions have neg-
ative values, consistent with expectations. Stimuli that provide a
higher quality of evidence or a more extreme subjective memory
strength (e.g., LF targets and foils) have a higher absolute value of
the drift rate than stimuli resulting in poorer quality of evidence or
less extreme values of subjective memory strength (e.g., HF targets
and foils, respectively), consistent with models that attribute the
WFME to different distributions of memory strength (e.g., Criss &
Malmberg, 2008; Dennis & Humphreys, 2001; Glanzer & Adams,
1990; McClelland & Chappell, 1998; Reder et al., 2000; Shiffrin &
Steyvers, 1997; Stretch & Wixted, 1998). Drift rate parameters as
a function of study repetition are consistent with the differentiation
models (Criss, 2006; Criss & McClelland, 2006; McClelland &
Chappell, 1998; Shiffrin & Steyvers, 1997). Encoding conditions
that lead to more evidence also have a higher drift rate (strong
relative to weak targets). Critically, the absolute value of the drift
rate for foils following a strong list is greater in magnitude than the
value for foils following a weak list. The RT data and modeling
disconfirm the starting point version of the criterion shift model
but not the drift criterion version of the criterion shift model. It is
mathematically impossible to discriminate between changes in the
drift criterion parameter and changes in the foil drift rate parameter

in this paradigm. Thus, either the differentiation models provide a
more accurate description of episodic memory or there are multi-
ple types of criterion shifts that have been lumped into a single
class and modeled with a single parameter within memory models
(or potentially both).

It is informative to note that the starting point model is inaccu-
rate at both a qualitative and a quantitative level of analysis. In this
model, drift rates for strong and weak foils are identical, which
predicts approximately equal RTs and approximately equal FARs
for the strong and weak foils, which is inconsistent with the
empirical pattern of data. A starting point biased toward the “not
studied” boundary for strong relative to weak lists would partially
correct this by decreasing the FAR for the strong list. However,
this also predicts faster “not studied” responses for strong than
weak foils and slower “studied” responses for strong than weak
foils. Further changes in starting point shift more than spread the
distributions (as demonstrated in Figure 5). All these qualitative
descriptions are inconsistent with the pattern of data seen in
Figure 8.

Mixed model. As in Experiment 1, it is plausible that a mixed
model allowing both drift rate and starting point to change with list
strength may provide additional flexibility to predict the subtle
quantitative details of the data beyond that provided by a drift rate
model alone. However, the mixed model will always fit at least as
well as or better than the simpler, nested model and is therefore of
little use in model selection. Indeed, a mixed model with eight drift
rate parameters (HF weak targets, HF strong targets, HF weak
foils, HF strong foils, and their LF counterparts) and two starting
point parameters (weak and strong lists) fit group data better than
the original starting point or drift rate model (see Table 7). As
shown in Table 8, the drift rate parameters for the mixed model
follow the same pattern as for the drift rate model: LF and strong
conditions have more extreme drift rates than HF and weak con-
ditions for both targets and foils. Surprisingly, the starting point
values are in the opposite direction of what would be predicted by
a criterion shift memory model: The starting point is closer to the
“studied” boundary for the strong list compared with the weak list.
This may be a result of serial correlations (Laming, 1968; Treis-

Table 6
Best Fitting Parameters of the Drift Rate Model for Experiment 2

Parameter Interpretation
Value

(group data)
Mean value

(individual fits)

Ter mean nondecision time 0.5175 0.5103
st range of nondecision time 0.1530 0.1866
a boundary separation 0.1221 0.1294
sz range of starting point 0.0641 0.0421
� variance of the drift rate 0.2188 0.2283
z starting point (constrained to equal a/2) 0.0611 0.0647
vHFst drift rate for HF strong targets 0.2070 0.2306
vHFwt drift rate for HF weak targets 0.0685 0.0678
vHFsf drift rate for HF strong foils �0.2872 �0.3194
vHFwf drift rate for HF weak foils �0.2228 �0.2310
vLFst drift rate for LF strong targets 0.3244 0.3820
vLFwt drift rate for LF weak targets 0.1663 0.1833
vLFsf drift rate for LF strong foils �0.3917 �0.4566
vLFwf drift rate for LF weak foils �0.2713 �0.3094

Note. HF � high frequency; st � strong target; wt � weak target; sf � strong foil; wf � weak foil; LF � low
frequency.

Table 5
Model Selection Results for Fits to Group Data in Experiment 2

Model AICc wi(AICc) BIC wi(BIC)

Drift rate 108604 1.00 108709 1.00
Starting point 108745 0.00 108851 0.00

Note. AICc � Akaike information criterion with a finite sample correc-
tion; BIC � Bayesian information criterion.
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man & Williams, 1984; Verplanck, Collier, & Cotton, 1952). On
average, a strong list produces more “studied” responses than a
weak list (46% vs. 41%).

Fits of the mixed model to individual participants proved un-
certain. An equal number of participants (N � 5) are best fit by the
mixed model and the drift rate model. The starting point model is
favored by two participants, and model selection was inconclusive
for another four participants (BIC favored one model, AICc fa-
vored a different model, or the model weights were equally split
among two models).

Figure 8 plots the data and fits of both the drift rate model
(denoted by X) and the mixed model (denoted by �) for compar-
ison. The drift rate model captures the pattern of data quite well,
with all predicted values within or very near two standard errors of
the mean value. The improvement in fit provided by the mixed
model is a very slight slowing of incorrect “new” and speeding of
incorrect “old” responses for the strong conditions. As was true for
Experiment 1, support for the mixed model is inconsistent. Group
data favor the mixed model; individual participants were split
between the models. Drift rates must vary between strong and
weak targets and strong and weak foils to account for the quali-
tative pattern of data—large changes in the tail of the distributions
and mostly absent changes in the leading edge of the RT distribu-
tions. Allowing the starting point to vary as a function of list

strength, in addition to drift rate, provides a small improvement in
the quantitative details of the fit.

The goal of this experiment was to assess whether list strength
alters decision criterion (e.g., starting point) or evidence accumu-
lation (e.g., changes in the drift rate) for foils. The data offer strong
support for the latter. Foils following a strong list have larger
values of drift rates than foils following a weak list. Allowing the
starting point to change with list strength improves small details of
the fit for the mixed model. Notably, the best fitting change in
starting point is in the opposite direction of that predicted by
criterion change memory models: Participants were more biased
toward the “studied” response boundary following a strong than a
weak list. These data disconfirm the starting point version of the
criterion shift model but are consistent with either the differenti-
ation model or the drift criterion version of the criterion shift
model.

General Discussion

This article makes use of manipulations in recognition memory,
stimulus probability, and list strength, for which accuracy alone is
insufficient to discriminate between models. The goal of this
article was to use the diffusion model as a measurement tool to
provide converging evidence in the debate in the memory model-
ing literature between differentiation and criterion change accounts
of encoding strength. In one experiment, stimulus probability was
manipulated. “Studied” responses are more likely when targets are
more probable at test, and “not studied” responses are more likely
when foils are more plentiful at test. RT distributions shift such
that the more likely response is faster and the less likely response
is slower in both conditions. This pattern of data requires a model
with differences in starting point, specifically with starting points
closer to the more likely response. In a second experiment, list
strength and word frequency were manipulated, and both LF and
strong lists have higher HRs and lower FARs than HF and weak
lists, respectively. RT distributions shift such that the tail of the
distribution is faster for the more accurate conditions but the

Table 7
Model Selection Results Including the Mixed Model for Group
Data in Experiment 2

Model AICc wi(AICc) BIC wi(BIC)

Mixed 108469 1.00 108590 1.00
Drift rate 108604 0.00 108709 0.00
Starting point 108745 0.00 108851 0.00

Note. AICc � Akaike information criterion with a finite sample correc-
tion; BIC � Bayesian information criterion.

Table 8
Best Fitting Parameters of the Mixed Model to Data From Experiment 2

Parameter Interpretation
Value

(group data)
Mean value

(individual fits)

Ter mean nondecision time 0.5131 0.5105
st range of nondecision time 0.1528 0.1812
a boundary separation 0.1208 0.1306
sz range of starting point 0.0530 0.0416
� variance of the drift rate 0.2088 0.2367
zs starting point for strong list 0.0670 0.0686
zw starting point for weak list 0.0615 0.0672
vHFst drift rate for HF strong targets 0.1675 0.2043
vHFwt drift rate for HF weak targets 0.0600 0.0576
vHFsf drift rate for HF strong foils �0.3126 �0.3452
vHFwf drift rate for HF weak foils �0.2198 �0.2436
vLFst drift rate for LF strong targets 0.2726 0.3568
vLFwt drift rate for LF weak targets 0.1549 0.1746
vLFsf drift rate for LF strong foils �0.4127 �0.4906
vLFwf drift rate for LF weak foils �0.2650 �0.3156

Note. HF � high frequency; st � strong target; wt � weak target; sf � strong foil; wf � weak foil; LF � low
frequency.
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leading edge is relatively stable. The RT data confirm prior find-
ings of a larger drift rate for LF targets and foils than their HF
counterparts (e.g., Ratcliff et al., 2004). This pattern of data
requires differences in the functional drift rate for strong and weak
targets and for strong and weak foils, with larger values of drift
rate following a strongly encoded list. The drift rate changes can be
attributed to changes in memory strength and/or changes in drift
criterion; the SBME paradigm does not allow for discrimination of
these two possibilities.

In both experiments the data were best fit by a mixed model in
which starting point and drift rate change. In both cases the mixed
model best fit the group data but received limited support from fits
to individuals. Further, the gain from the additional parameter
(drift criterion in Experiment 1 and starting point in Experiment 2)
is not necessary for a very good fit that captures all qualitative
patterns in the data; rather the additional parameter provided by the
mixed model improves the intricate details of the fit. Whether the
inclusion of an additional parameter in the mixed models provides
a meaningful explanation for the underlying cognitive processes or
merely fits noise in the data is unresolved. This remains a question
for future research.

Two classes of memory models are being considered: differen-
tiation and criterion shift models. First, consider Experiment 1, in
which stimulus probabilities were manipulated. Both classes of
models agree that the increase in HRs and FARs when 70% of the
test items are targets is a criterion shift that does not interact with
the evidence provided by the stimulus. This type of criterion shift
represents bias in the decision process and is commonly attributed
to the location of the criterion in signal-detection-like memory
models (e.g., Rotello et al., 2006). Now consider Experiment 2 in
which list strength and word frequency were manipulated. LF
words are better remembered than HF words. One explanation
comes from the REM model (Shiffrin & Steyvers, 1997). In REM,
LF words tend to be composed of more distinctive features, and
HF words tend to be composed of more common features. HF
words tend to match many different words by chance because of
these shared common features, accounting for the higher HF FAR.
The amount of positive evidence provided by a matching feature is
a function of the distinctiveness or diagnosticity of that feature,
predicting a higher LF HR. Higher quality of evidence translates to
drift rate in the RDM. How, then, might the differences in drift rate
for strong and weak lists be interpreted?

In differentiation models, the encoding and retrieval processes
predict an increase in subjective memory strength for targets and a
decrease for foils as a function of list strength. This is consistent
with interpreting changes in drift rate in Experiment 2 as differ-
ences in the quality of information provided by the stimulus, just
as is assumed for the word frequency manipulation. The ordering
of subjective memory strength predicted by default parameters of
the differentiation models matches the ordering of drift rates
generated by the diffusion model.

In criterion shift models, the subjective memory strength for
targets increases as a function of list strength, corresponding to a
higher drift rate for strong targets. However, the subjective mem-
ory strength for foils remains constant or increases as a function of
list strength. Under this framework, the foil drift rate does not
change as a function of strength; rather, the drift criterion changes.
A change in the drift criterion between strong and weak lists means
that the encoding conditions determine how evidence is accumu-

lated. This type of criterion shift that affects the processing of the
stimulus might be called evidentiary or perceptual bias (cf. Voss,
Rothermund, & Brandtstädter, 2008). Thus, to account for the full
set of data presented here, criterion shift models need two types of
criteria changes: one that influences how evidence from the stim-
ulus is treated, called evidentiary or perceptual bias, and one that
operates at the level of the decision and is independent of evidence
accumulation, called decision bias.

Unfortunately, modern recognition memory models do not ac-
count for RT distributions, and modification to the models would
be required in order to do so (but see Diller, Nobel, & Shiffrin,
2001). Presumably, one could combine a differentiation memory
model with a diffusion decision model by taking values of sub-
jective strength from differentiation models and feeding them as
drift rates into a diffusion process. The current data would seem to
follow directly from such a model. Existing fixed-strength crite-
rion shift models may have conceptual difficulties, for they would
need to incorporate two types of criterion shift, whereas there is
currently only one. In signal detection models there exists a single
type of criterion shift, typically interpreted as decision bias (e.g.,
Green & Swets, 1966). In contrast, much of the RDM literature
equates the drift criterion, which represents evidentiary or percep-
tual bias, with the criterion in signal detection theory (cf. Ratcliff
& McKoon, 2008). An alternative interpretation is that the drift
criterion serves as a likelihood transformation.6 One avenue for
further research is to explore likelihood-based models as one type
of change in response probabilities based on expectancy (e.g.,
evidentiary or perceptual bias) along with a criterion for respond-
ing “studied” or “not studied” based on the memory strength
resulting from that likelihood computation (e.g., decision bias).

Changes in decision bias and evidentiary or perceptual bias have
similar (or identical) outcomes in accuracy but substantially dif-
ferent RT distribution profiles (and are therefore governed by
different parameters in the RDM). Ignoring RT in the memory
literature has led to the current unviable situation in which differ-
ent types of shifts in criteria are treated as identical and accounted
for by the same parameter (e.g., the criterion in signal detection).
Further, empirical manipulations leading to the different types of
criterion shifts are not obvious, and nothing inherent in extant
models provides insight into this question. One solution to this
problem is to develop models that describe the processes under-
lying episodic memory. Currently, there are a number of measure-
ment models (e.g., various forms of signal detection theory) that
are treated as process models. The differentiation models suffer
none of these consequences, as they attribute changes in drift rate
to the quality of evidence provided by the stimulus rather than bias
and changes in decision bias to the location of the criterion.

Evidence for Differentiation

Evidence for the differentiation of perceptual and semantic
knowledge and the developmental course of differentiation of
broad categories first, followed by more subtle distinctions, is
plentiful (cf. E. J. Gibson, 1940, 1969; J. J. Gibson & Gibson,
1955). Loss of semantic knowledge follows the reverse pattern,
with fine distinctions between similar items lost before the dis-

6 I thank Andrew Heathcote for this suggestion.
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tinction between more general categories (e.g., McClelland &
Rogers, 2003; Rogers & McClelland, 2004). Evidence for differ-
entiation in episodic memory is growing. Criss (2006) reported
simulations from differentiation models predicting that a similar
foil matches a strong memory trace better than a weak memory
trace (opposite to the pattern for an unrelated foil). These simula-
tions considered the case in which a foil is similar to one strong or
one weak target and the predictions were confirmed empirically.
Criss (2009) used the direct ratings method of Mickes, Wixted, and
Wais (2007) to collect distributions of subjective memory strength
for targets and foils following strong and weak lists. The data
supported a priori predictions of differentiation models, namely,
that the distribution for foils following a strong and a weak list
differ, as do distributions for strong and weak targets. In a second
experiment, Criss manipulated response bias (using the same stim-
ulus probability manipulation used in Experiment 1) and found no
change in the distributions of memory strength despite finding the
expected changes in HR and FAR. This pattern of data supports
differentiation models under the assumption that the direct ratings
paradigm elicits subjective memory strength and manipulations of
response bias alter the location of the criteria for calling an item
“studied.” All the episodic memory data just reviewed and the data
reported here are predicted by differentiation models. Criterion
shift memory models can also explain such data, but doing so
requires a number of post hoc assumptions about the presence (and
absence) of shifts in criteria for each experimental condition.

Likelihood Ratio Models

In their seminal work on mirror effects, Glanzer and Adams
(1985, 1990) demonstrated mirror effects for a large number of
experimental manipulations that resulted in one class of items that
were better remembered than another class of items. They devel-
oped the attention likelihood model, a fully informed likelihood
ratio model in the original form, in which the decision about
whether to call an item “studied” takes into account properties of
the test stimulus and experimental conditions. Fully informed
likelihood models naturally and necessarily predict a mirror pat-
tern. In the original SBME article, Stretch and Wixted (1998)
demonstrated that participants do not produce a within-list mirror
effect even when the test items that belong to strong and weak
conditions were made transparently clear (e.g., by using different
font colors). If the decision rule took into account the information
about the test item, then a within-list mirror effect should have
been observed. Fully informed likelihood ratio models have also
been disconfirmed in other paradigms (e.g., Balakrishnan & Rat-
cliff, 1996; Hintzman, 1994). On this basis, Stretch and Wixted
ruled out fully informed likelihood ratio models as an explanation
for this class of mirror effects, and such models have largely been
dismissed in the interim.

However, recent experiments are consistent with partially in-
formed likelihood ratio models that take into account some (but
not all) properties of the experimental situation. For example, a
within-list mirror effect is observed for items studied immediately
prior to the list and those studied in the more distant past (Singer,
Gagnon, & Richards, 2002; Singer & Wixted, 2006). Starns (2009)
recently applied one such model, the bind cue decide model of
episodic memory (Dennis & Humphreys, 2001; cf. Criss & Shif-
frin, 2004), to the SBME by adjusting the amount of evidence

required for a “studied” response based on the expected difficulty
of the test list (which was provided by the experimenter). Memory
models with likelihood ratio decision rules (which include the
differentiation models) are consistent with the data presented here
and are a promising avenue for further theoretical development.

Conclusions

A number of other studies have investigated the nature of
criterion changes within a single test list (e.g., S. Brown &
Steyvers, 2005; Hockley & Niewiadomski, 2007; Singer et al.,
2002; Singer & Wixted, 2006) and whether criteria are set based
on the perceived difficulty of the study list or the experienced
difficulty of the test items (e.g., Benjamin & Bawa, 2004; J.
Brown, Lewis, & Monk, 1977; Hirshman, 1995; Verde & Rotello,
2007). The majority of these experiments assumed a fixed-strength
model and did not consider differentiation models. Indeed, prior to
Criss (2006), differentiation was not recognized as an explanation
for the SBME. Since then a number of studies have reported
evidence consistent with a priori predictions of differentiation
models (e.g., Criss, 2009, and the current data; Hockley & Niewia-
domski, 2007). At this point, the literature does not unambiguously
favor a criterion shift or a differentiation account, and this domain
is fruitful ground for future research and theory development.

Surprisingly few studies of recognition memory report reaction
item, and even fewer evaluate RT distributions. This article illus-
trates a case in which identical patterns of accuracy are accompa-
nied by qualitatively different patterns of RT distributions. Anal-
ysis of accuracy in the absence of RT fails to capture these
differences in performance. Developing diffusion models based on
the assumptions of memory models proved to be a useful tool for
evaluating competing memory models.
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