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Preface 

This manuscript is the culmination of several years of research aimed at 

understanding how associations are represented in memory, how that representation 

relates to the representation for single items, and how to best implement these principles 

within the framework of existing mathematical models.  The manuscript is written in 

such a way that each of the three parts could be read (mostly) independent of the others.  

The first part has recently been accepted for publication in Memory & Cognition.  It is 

the initial set of studies using various types of pairs (word-word, word-face, and face-

face) as a tool for measuring interference and thus drawing conclusions about the 

similarity between different classes of pairs.  In this set of studies, we found that 

performance in associative recognition is determined by the number of within-class pairs 

and not affected by pairs of another class.  Single item recognition, however, was 

determined by the total number of singles and not affected by pair-type.  We explain why 

no existing model can account for this pattern of data and describe modifications of 

existing models that would be able to capture the pattern of data.  Part II seeks to gather 

converging evidence for this important finding using a different paradigm.  The primary 

finding is that single items repeated during study have no affect on associative 

recognition performance when those items were studied in a different pair-type.  Only 

when single items are repeated in the same pair-type do we see interference, in the form 

of a tendency to call any pair old if it contains repeated items.  Again, single item 

recognition shows a different pattern of results.  Namely, single items that were studied in 

an earlier study list show equal amounts of interference regardless of whether the 

repetitions occurred in the same or different type of pair.  The model described in Part I 
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captures this pattern data both qualitatively and quantitatively.  Finally, in Part III we 

manipulate instructions at study in order to better understand the degree to which these 

findings depend on the stimulus type and/or encoding strategies.  We find that both the 

independence between single item and pair representations and the dissimilarity of the 

three types of pairs depend on encoding strategies.  Though this set of studies is not 

entirely conclusive, it seems that conditions encouraging participants to relate the study 

pairs in a unique way led to the patterns described above.  Whereas, when Ss are not 

given specific instructions on how to study the items, we see neither of these 

independencies.    
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Abstract 

What is the representation of pairs in memory?  Some models make the 

assumption that a pair is represented as the two component items bound together in time.  

Others assume emergent pair information beyond the information contained in each 

singleton.  In fact, the present set of studies will show that neither of these assumptions 

will suffice.  Using an associative recognition task requiring discrimination between two 

items studied together and two items studied as members of different pairs, we found that 

discrimination fell as the number of studied pairs of the same type rose, but the number 

of studied pairs of other types had little effect.  That is, we find a list length effect within 

but not between classes of stimuli, when we define the classes of stimuli to be word-face, 

word-word, and face-face pairs.  On the contrary, single item recognition is not 

influenced by pair-type.  The model types employing the assumptions described above 

were unable to account for this pattern of data, leading to the development of a novel set 

of models.  A test of the new model was carried out in another empirical setting using 

two successive study lists with repetitions of some items and some pairs across lists.  This 

design required that intact pairs in the recent list be distinguished from rearranged pairs 

as well as intact pairs from the previous list.  The results showed that between-list 

confusions only occurred for pairs of the same type, even when the constituent single 

items were repeated across lists, confirming the previous conclusions and model.  On the 

other hand, we find the same pattern of confusions for single item recognition, regardless 

of the type of pair(s) in which the single items were studied.  The model developed to 

handle the first paradigm proved capable of predicting the new results in quantitative 
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detail.  Finally, we briefly address the degree to which encoding strategies determine the 

independence of singles and pairs and the independence of these pair-types. 
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 Part I 

 

 

Pairs do not suffer interference from other types of pairs  

or single items in associative recognition. 



 

 2

 The meaning of the word jam in the pair strawberry jam clearly differs from its 

meaning in the pair traffic jam.  Indeed, research has shown that memory for an item is a 

function of the match between the semantic context at study and that at test (Light & 

Carter-Sobell, 1970; Tulving & Thompson, 1973).  Related to this principle is the 

possibility that study of word-pairs, even for unrelated words, might induce configural 

meaning that goes beyond and may be independent of the meaning of the constituent 

words in isolation (see Clark & Gronlund, 1996 for a review of the independence 

hypothesis).  Evidence for configural processing of unrelated word pairs comes from 

Dosher and Rosedale (1997) who found cuing advantages for triples only when all three 

components were studied together.  Further, Hockley (1992) showed that singles and 

pairs have different forgetting functions and Hockley & Cristi (1996a) showed that item 

and associative memory are differentially affected by instructional manipulations. 

In this paper, we continue to explore configural processing by examining the 

effects of such processing on interference during retrieval.  For example, word pairs as a 

class might tend to be dissimilar from single words as a class, hence reducing cross-class 

memory interference.  Similarly, the class of word-face pairs might be dissimilar from the 

class of word-word pairs, and so forth.  Few studies have looked at length effects that 

cross item-type boundaries.   Gillund & Shiffrin (1981) found that the number of studied 

pictures affected word recall and vice versa.  However the array of strategies used in free 

recall makes it difficult to come to definitive conclusions concerning the source of 

interference effects.   

Hockley and Cristi (1996b) had participants study single items and/or pairs that 

were repeated various numbers of times and in various combinations.  In different 
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experiments, a single item could be repeated as both a single and as part of a pair, only as 

part of a pair, or as part of several different pairs.  In general, participants were able to 

judge the frequency of single items and of pairs.  Critically, they were able to make 

separate judgments of the frequency of singles that were studied as singles and singles 

studied as members of a pair.  Despite Ss ability to make fairly independent judgments of 

frequency, more traditional memory tasks may show interference.  That is, singles and 

pairs stored in memory may be retrieved during a traditional memory task even if Ss are 

able to focus in on a subset when instructed to do so.   

The current experiments gather additional evidence regarding whether the 

retrieval of associations is affected by the number of single items on the study list and 

whether the retrieval of pairs or items from one class is affected by the number of pairs or 

items from another class.  Specifically, we use a modified list length manipulation to 

measure interference between and within different classes of pair-types for both single 

item (SR) and associative recognition (AR).  In both our SR and AR tasks, participants 

study a list of pairs (denoted as AB, CD, EF, etc.).  In SR they are tested with a sequence 

of single items (A, B, X, Y, etc.), judging whether each had been studied (a target, such 

as A) or not (a foil, such as X).  In AR they are tested with a sequence of pairs and judge 

whether each had been studied as an intact pair (e.g., AB), to which they should respond 

“old,” or a rearranged pair composed of two items studied in different pairs (e.g., CF), to 

which they should respond ”new.”  Unlike SR, all single items in AR have been studied, 

so single item familiarity cannot provide a basis for correct judgments.  Instead, 

participants must make judgments about the relationship between the two words.  Thus, 
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this task is considered a relatively pure measure of memory for associations (Humphreys, 

1976; 1978).   

Survey of Global Matching Models 

We now turn to a brief survey of global matching models (GMM) which have concrete 

representational assumptions about single items and pairs (e.g. Gillund & Shiffrin, 1984; 

Shiffrin & Steyvers, 1997; McClelland & Chappell, 1999; Murdock, 1982; 1997; 

Humphreys, Bain, & Pike, 1989; Hintzman, 1988;  Metcalfe-Eich, 1985).  These models 

incorporate the common assumption that memory traces (composite or separate) consist 

of a vector (or matrix) of values, equivalent to a point in a high dimensional space.  We 

refer to the value stored in each position as a feature, which is equivalent to its value on 

some dimension.  A feature is defined to be a particular position of a memory probe or 

trace that can be aligned with a corresponding position in another memory probe or trace, 

in order to allow the values in corresponding positions to be compared.  Positions that 

align refer to the same feature and any that do not align refer to different features.   

Extant GMMs have used two basic approaches to representing single items and 

pairs.  In one, each single item is represented as a vector of feature values, and a pair is 

represented by a concatenation of the single item vectors into a double long vector (e.g. 

Hintzman, 1988; Shiffrin & Steyvers, 1997; 1998; Diller, Nobel, & Shiffrin, 2001).  In 

these concatenation models SR involves matching a test item against each of the vectors 

(or each half of the double long vectors if pairs were studied) and combining the 

matching scores into a familiarity value that is used for a decision.  All matches of traces 

other than the target add variability to the decision statistic, reducing performance.  

Hence these models predict length effects, defined as the drop in performance as the 
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number of non-target traces rises.  Because pairs are represented as concatenations of 

single item vectors, an increase in the number of either single items or the number of 

pairs should reduce performance for SR. 

There are two primary ways to carry out AR in the context of concatenation 

models.  In one approach the double long test probe is compared to each stored double 

long trace.  The matching scores are again combined into a familiarity measure that is 

used to make a decision.  An intact test pair tends to match all 2N features of one trace, 

whereas a rearranged test pair tends to match two different traces in N features each.  

Because familiarity is calculated as a product of evidence from each feature (in Shiffrin 

& Steyvers, 1997 or the cube of the evidence in Hintzman, 1988), 2N matching features 

in one trace tend to contribute more to familiarity than N matching features in each of 

two traces, producing above chance AR performance.  Note however, that for foil probes, 

the N matching features in each of two traces tends to contribute much more to 

familiarity than the accidentally-matching features in all the traces of pairs that do not 

contain either of the items in the test probe.  This reduces the dependence of performance 

upon the number of these other traces, largely eliminating the prediction of length effects.  

To reiterate, for concatenation models the errors in AR tend to be confusions caused by 

the two traces of the half-matching rearranged pairs, but not confusions with the traces of 

the other studied pairs, reducing (or eliminating) any dependence on list length.   

The other approach to AR in concatenation models uses a cued recall process.  In 

the extant models, a single item is used as the recall cue.  Each single member of the test 

pair is used as a probe cue in an attempt to recall the trace containing that item (Diller, 

Nobel, & Shiffrin, 2001) or produce a composite vector dominated by feature values of 
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the single item that had been paired with the test item (Hintzman, 1988).  Both methods 

involve a step in which the cue item is matched to single item sub-vectors in the stored 

traces, and hence both predict length effects.  AR performance should decrease as the 

number of studied pairs increases (because the number of studied single items increases 

in step with the number of studied pairs).  It would be possible to imagine cued recall 

models in which the probe consists of the two test items taken together.  Such a model 

would be similar to the joint probe strategy mentioned above.  Thus, when a foil is tested, 

the traces in memory that would dominate retrieval would be the two half-matching 

traces, reducing or eliminating length effects.   

A second class of models represents single items and pairs as vectors, but the 

vector representing a pair is independent of the vector representing a single item.  Thus 

one could describe such models as having emergent associative features.  However, the 

standard versions of these models assume that the vectors representing single items and 

pairs are superimposed into a single summed composite memory vector (e.g., the 

TODAM model of Murdock, 1982, or the CHARM model of Metcalfe-Eich, 1985).  

These composite models have the interesting property of dissociating a pair from the 

single items of which it is comprised.  Yet because associative and single item traces are 

stored in the same vector positions, the match of the test probe to the stored composite 

vector involves matching the test probe to all traces of all types.  This statement holds 

whether the matching is direct (as for example, in the TODAM recognition model) or due 

to a recall process (as for example, in CHARM or the cued recall model in TODAM).  

That is, regardless of recognition or recall retrieval processes, these composite storage 

representations predict that increases in the number of studied single items, number of 
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studied pairs, or both will reduce performance (i.e., the list length effect).  This 

conclusion applies to both SR and AR tasks.   

The above discussion of TODAM assumes that the memory vector is zeroed (i.e., 

empty) at the beginning of a study list.  However, more recent versions of the model 

implement the continuous memory assumption: the idea that the composite memory 

vector contains all pre-experimental experiences as well as the current list (Murdock, 

1997; Murdock & Kahana, 1993).  To implement this idea, the memory vector is not 

zeroed prior to the experiment.  Under this assumption and the assumption that context is 

not used during AR, Murdock (1997) showed no forgetting for pairs due to the use of 

context drift as the primary cause of forgetting.  Our discussion assumes the original 

formulation of TODAM (Murdock, 1982; Weber, 1988) where list length effects are 

caused by the increase in variance as additional items are added to the memory vector in 

addition to forgetting.  To foreshadow, we will find that performance for AR is not a 

function of the entire list length, but depends on the total number of pairs of the same 

type.  We have pointed out that TODAM can either predict no list length effect (i.e., no 

forgetting) for pairs (i.e., Murdock 1997) or a list length effect dependent on the total list 

length (i.e., Murdock, 1982).  However, it should be clear that both cannot be 

simultaneously predicted. 

Such models provide the background for the present studies.  We briefly reiterate 

that we use single item and associative recognition to explore the existence or absence of 

length effects within and between classes of item types.  The study lists contain different 

numbers of items of different classes: word-word pairs (WW), face-face pairs (FF), and 

word-face pairs (WF).  Memory is tested using both AR and SR.  Though we are 



 

 8

primarily interested in changes in discrimination, we also report hits and false alarms.  

We use da (Macmillan and Creelman, 1991) as our measure of discrimination though note 

that several alternative measures resulted in the same patterns of data for all 

experiements.1   For SR, we ask whether memory is determined by the numbers of the 

different pair-types or the number of single items.  Similarly, for AR we ask whether 

performance is determined by the numbers of pairs of the same or different type (e.g. 

whether word-face judgments are affected by the number of word-word pairs studied) or 

the total number of studied pairs.  Both concatenation and composite models predict that 

the effect of list length is determined by the total number of studied pairs for both SR and 

AR.   

Experiments 1 and 2 

 In the following two experiments participants studied lists of WW, WF, and FF 

pairs.  All study lists contain the same number of single words, the same number of single 

faces, and the same total number of pairs.  What varies across lists is the relative number 

of each type of pair (i.e., WF, WW, and FF).  Because the total list length is held 

constant, both concatenation and composite models predict no change in performance for 

AR or SR.  The lists of pairs were studied under the same incidental instructions in both 

experiments.  The experiments differed only at test: Experiment 1 used AR, and 

Experiment 2 used SR.   

General Methods 

Materials 

Black and white photographs of faces were selected primarily from college 

yearbooks and from the Olivetti Research Database of Faces (AT & T, Cambridge, 
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1994).  Each of the 210 faces was standardized so that the head orientation, level of the 

eyes, and position of the chin were identical and there was very little (if any) background.   

A set of 210 hard to image, low-frequency words (M=6.46; Kucera & Francis, 1967) 

were selected, excluding any words that might be used to describe a face, a person, or a 

characteristic of either.   

Presentation of stimuli and recording of participant data was executed on IBM-

compatible personal computers using Macromedia's Authorware 5 Attain software.   

Procedure 

The words and faces were combined to form a study list of 120 non-overlapping 

pairs of three types: word-face and face-word pairs denoted WF, word-word pairs 

denoted WW, and face-face pairs denoted FF.  The pairing was random such that any 

face could be paired with another randomly selected face or a randomly selected word for 

each participant.  The number of each type of pair presented during the study session was 

varied between groups.  Group A studied 40 of each pair-type, Group B studied 60 WF, 

30 WW, and 30 FF pairs, and Group C studied 80 WF, 20 WW, and 20 FF pairs.  All 

types of pairs were intermixed and presented in a random order during study and test.   

Participants were not informed that a memory test would follow.  During each 

study trial, the members of the study pair were presented side-by-side on the monitor for 

3 s.  Participants judged the degree of association between the two items using a 5-point 

scale.  The study session began and ended with six buffer trials, two of each type.   

Immediately following, participants were given an unexpected memory test (AR 

in Experiment 1 and SR in Experiment 2).  Participants made judgments using a 6-point 

confidence scale where the first 3 points corresponded to "new" and the last 3 
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corresponded to "old."  The test session began with six trials using the buffer stimuli and 

these trials are not included in any of the reported analyses.   

Experiment 1: Associative Recognition Testing of Studied Pairs 

Methods 

Participants 

The number of participants in each group varied in order to keep the total number 

of observations per condition approximately equal.  Of the 198 Indiana University 

undergraduates who participated for either course credit or $6.00, there were 38 in Group 

A, 66 in Group B, and 94 in Group C.   

Test Procedure 

The participants received an unexpected AR memory test.  Test pairs were 

presented one above the other (in contrast to the study phase in which the pairs had been 

presented one beside the other).  All test pairs consisted of one item that had been studied 

on the left and one that had been studied on the right, but the test position (top vs.  

bottom) was not correlated with the study position (left vs.  right).  The test contained an 

equal number of intact and rearranged trials of each pair-type.  Rearranged test pairs were 

constructed within pair-type (i.e., each face in a rearranged FF pair contained faces that 

were studied in two separate FF pairs; WW and WF foils were composed by the same 

method).  Both members of a study pair contributed to different rearranged pairs.  The 

number of study pairs limited the number of possible test pairs and consequently the 

associative recognition test consisted of 40 pairs of each type for Group A, 28 pairs of 

each type for Group B and 20 pairs of each type for Group C. 

Results 
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 For all analysis we used an alpha level of .05.  We are primarily interested in 

changes in discrimination.  Although we did not have predictions concerning changes 

that might occur for hits and false alarms considered separately, we analyzed this data.  

Hit rates (HR) did not differ between groups for WW (F(2, 195)=.50, MSE=.03, p=.622), 

WF (F(2, 195)=.48, MSE=.03, p=.621), or FF pairs (F(2, 195)=2.37, MSE=.06, p=.096), 

nor did false alarm rates (FAR) for WW (F(2, 195)=.57, MSE=.03, p=.569), FF (F(2, 

195)=2.178, MSE=.03, p=.116).  FARs did vary between groups for WF pairs (F(2, 

195)=3.123, MSE=.03, p=.046), as shown in Table 1.   

 An analysis of da shows a within pair-type category length effect.  That is, 

discrimination for WF pairs decreased with an increase of the number of WF pairs (F(2, 

191)=4.01, MSE=.49, p=.02).  Likewise, discrimination of FF pairs decreased with an 

increase in the number of FF pairs (F(2, 191)=4.02, MSE=.46, p=.02).  The effect for 

WW pairs failed to reach significance (F(2, 194)=1.44, MSE=.55, p=.264).  The smaller 

length effects for WW pairs is curious, but consistent with the finding of little forgetting 

for pairs over a relatively short time period in the continuous recognition paradigm 

(Hockley, 1992) and the very small or absent list length effects occasionally found for 

words in SR (Dennis & Humphreys, 2001).  For longer study-test delays (i.e., as short as 

30 minutes), Hockley & Consoli (1999) have shown equal retention levels for item and 

associative information.  Perhaps longer study-test delays would help maximize the 

length effect for WW pairs.  The three groups of bars in Figure 1 give results for FF, 

WW, and WF pairs in that order.  Within each group, the bars are in descending order of 

the number of pairs of that type on the study list.  The bars generally increase in height 

from left to right, indicating a category length effect within pair-type.  That the separate 
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analysis of hits and false alarms did not show systematic and significant changes with 

category length was not unexpected, and could have been due to changes in criterion 

placement between lists (among other factors).  This study does not allow us to attribute 

the source of the discrimination changes to hits or false alarms. 

In the present design, the number of test trials was not held constant between 

groups, theoretically allowing learning during testing to differentially affect the groups.  

Though participants surely encoded something in memory during each test trial, it seems 

likely that these traces are weak and have little impact on the current data.  For example, 

strengthening items via repetitions does not harm recognition or cued recall performance 

for other items from the list (i.e., the null list strength effect; Ratcliff, Clark, & Shiffrin, 

1990), suggesting that additional intact test pairs would not harm performance much.  Of 

greatest importance, this confound does not predict the data.  Performance is best for WF 

pairs in the condition with the most test pairs (i.e., Group A with 40 study pairs of each 

type).  Nevertheless, we carried out additional analysis to ease concerns about this issue.  

The above statistical analyses were re-computed while restricting the data to the first 60 

test trials of each condition.  The qualitative patterns of data are identical.  Again, none of 

the HRs or FARs changed with the number of pairs on the lists (though the WF FAR is 

marginally significant, F(2, 194)=2.93, MSE=.03, p=.053; all other F’s<2.16 and 

p’s>.12).  For da, we again find no effect for WW pairs (F<1), but a decrease in 

performance as the number of studied pairs of the same type increase for FF pairs  (F(2, 

192)=6.26, MSE=.54, p=.002) and WF pairs  (F(2, 182)=2.69, MSE=.49, p=.07, though 

marginally significant).2  Taking into account all of these issues and noting that we 

replicate these findings in Experiment 3, we believe the confound to be unfortunate but 
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immaterial to the main thesis of this manuscript: that performance in AR is determined by 

pairs of the same type and not by pairs of a different type or by single items.   

Although discussion is deferred until the presentation of Experiment 2, it should 

be noted that the existence of within-type length effects implies that interference in 

associative recognition is not simply determined by the total number of pairs on the list 

(as predicted by the models), because the total number of pairs was held constant.   

Experiment 2: Single Item Recognition Testing of Studied Pairs 

Methods 

Participants 

 One hundred twenty five Indiana University undergraduates received course 

credit or $6.00 for participating in a 35 min session.  Groups A and B each had 42 

participants and Group C had 41.   

Test Procedure 

 Participants received an unexpected single item recognition test consisting of 120 

single faces and single words randomly intermixed.  These consisted of 20 studied items 

from each pair-type, 30 word foils, and 30 face foils.  Of the 20 test items from WF pairs, 

half were faces and half were words.   

Results 

 HRs and FARs for Experiment 2 are shown in Table 2.  HRs for words were 

slightly greater than faces (F(1, 122)=5.54, MSE=.03, p=.02) and for items studied in WF 

pairs (F(1, 122)=13.44, MSE=1.41, p<.001).  FARs were higher for faces than words 

(F(1, 122)=104.06, MSE=.02, p<.001).  Importantly, there was no evidence for a change 

in P(old) as the number of the different pair-types varied for the HR (F(2, 122)=.33, 
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MSE=.06, p=.723) or the FAR (F(2, 122)=.96, MSE=.04, p=.384).  The value of da, 

graphed in Figure 2, was higher for words than faces (F(1, 97)=68.15, MSE=.76, p<.001), 

but did not change significantly as the number of each type of pair varied between groups 

(F(2, 97)=1.23, MSE=1.15, p=.298).  This result, different from the pattern of 

performance for AR in Experiment 1, is predicted by extant concatenation and composite 

models.  For these models, the variation in the relative number of different types of pairs 

across groups would not have affected single item (or AR) performance given that the 

total number of single faces and single words remained constant.   

Discussion of Experiments 1 and 2 

In AR but not SR, performance for a given pair-type improves as the relative 

proportion of pairs of that type decreases.  This result by itself of course implies a 

differentiation by type - all pairs are not equal in their interfering effects.  If similarity of 

the pair-types to each other were constant, within-type length effects would not be 

present.  Alternative explanations based on differential study can be ruled out because the 

test type was post-cued.  Because the study conditions were identical in the two studies 

(regardless of the later type of testing), it would be hard to argue that different study 

strategies were responsible for the patterns observed.  The different patterns of 

performance then must be a result of some difference between AR and SR.   

A great number of studies demonstrate list-length effects in recognition and recall 

tasks using lists of a single type of item (but see Dennis & Humphreys, 2001).  A number 

of studies have also shown category length effects in free recall when categories are 

mixed in lists (e.g., Tulving & Pearlstone, 1966).  The length effects mentioned thus far 

have involved discrimination changes.  A different type of category length effect has 
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been observed in a few recognition studies using several categories per list.  These effects 

involved a parallel change in both hits and false alarms without a change in 

discriminability.  Such effects were found for several categories of words defined by 

semantic or visual/pronunciation similarity (Criss & Shiffrin, 2004a; Shiffrin, Huber, & 

Marinelli, 1995; Sommers & Lewis, 1999).  The present results are stronger because we 

find discrimination based length effects within pair-type, even when the total length of 

the list, and the total number of pairs, faces, and words was held constant for each list.   

To model their findings, Shiffrin et al.  (1995) and Criss & Shiffrin (2004a) 

suggested that the increase in familiarity and P(old) is caused by the similarity between 

stored traces of items in the category of the test item and the test item itself.  Familiarity 

and P(old) increased as the number of such traces increased.  By design, the majority of 

studied items were unrelated to any one test item and each of these also contributes 

variance, but less than traces of items in the test-item category.  The accumulated noise 

due to traces of items outside the test-item category produced most of the variance.  As a 

result and as demonstrated with their model, category size produced a change in the 

P(old) but no change in discrimination.  In the present studies, the similarity between the 

three pair-types and the two item types was likely much lower (e.g., the pair-types are 

likely dissimilar to each other) and the relative number of other-category items was 

lower.  Thus it is plausible that the relatively few, dissimilar other-category items 

contributed less variance (if any at all) compared to the similar same-category items 

resulting in a discrimination based change in performance as a function of the number of 

same-category pairs.   
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Finally, we have indirect evidence concerning the similarity of pairs comprised of 

words and faces (in any of the three possible combinations) to the single items 

comprising those pairs.  Pairs of items of a type different from the test pair-type 

nonetheless contain the same type of single items (e.g., both FF and WF pairs contain 

faces), but the number of such pairs does not have an effect.  That is, the number of 

single items in those other-type pairs does not reduce performance for AR.  Further, 

performance levels for pairs are not predictive of performance levels for the single items 

comprising them.  For example, consider those participants in Group A that studied an 

equal number of each pair-type.  Inspection of the right-most bar of Figure 1 and the 

black bars in Figure 2 reveal that this group of participants had the best performance for 

associative recognition of WF pairs (i.e., Figure 1) but the worst performance for 

recognition of single Ws and Fs (i.e., Figure 2).  This suggests a possible trade-off 

between the encoding of item and associative information (Hockley & Cristi, 1996a; 

McGee, 1980; Murdock, 1982) and indirectly supports the hypothesis of separate 

representations for pairs and single items.   

Due to the implications of the findings of the first two studies on representation, 

and their potential to constrain theories of associative recognition, we replicate and 

further explore them in the next experiment.   

Experiment 3 

 Experiment 1 co-varied the number of each pair-type between participants with 

the result that AR performance changed with the number of pairs of the same type.  The 

present study was designed to test this length effect within-participants rather than 

between-participants.  Of more substantive interest, this experiment was designed to 
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discover if and how adding items of one type to the study list affects performance for a 

constant number of studied pairs of another type.  In the previous studies, adding items of 

one type required removing items of the other type, in order to maintain a constant list 

length.  In this experiment each participant completes three study-test blocks.  For each 

participant, the number of pairs of one type is held constant across blocks and the number 

of another type of pair (and consequently, the total list length) is varied.  Based on the 

previous experiment, we expect that adding pairs of the same type will harm performance 

for that pair-type and not affect performance for other types of pairs.  In contrast, both 

classes of models predict performance will be determined by the total number of pairs.   

Methods 

Participants 

A total of 325 Indiana University undergraduates participated in return for either 

course credit or $6.00 for the 30 min.  session.  Each participant participated in only 1 of 

the 6 conditions described next. 

Materials 

 Materials were drawn from those used in Experiments 1 and 2. 

Procedure 

 There were six between-participant conditions, varying in the type of pairs used.  

Each participant had three study-test blocks described shortly.  Each group received just 

two pair-types: (WF, FF), (WF, WW), (WW, WF), (WW, FF), (FF, WF), (FF, WW), 

where the first pair-type in each set indicates the type that always had 20 pairs, and the 

second pair-type in each set indicates the pair-type that had either 0, 10, or 20 pairs across 

lists for that participant.  We refer to the pair-type that had 20 members on each study list 
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as the constant pair-type, the pair-type that had 0, 10, or 20 pairs on the list as the varied 

pair-type.  An example of one temporal order of events for the first of these six groups 

(WF, FF) is shown in Figure 3.  The figure depicts a particular order of the three list types 

(denoted A, B, C), but the order was randomly chosen for each participant.  Where there 

is a comma separating the pair-types within a row, the two types were actually presented 

in a randomly mixed order.   

 Each pair was studied for 3 s during which time the participants judged the degree 

of association between the two items.  Two buffer trials began and ended each study list 

(not shown in the example) and the order of lists and the stimuli on each list were 

randomly chosen for each participant.  The length of puzzle activity separating the study 

and test phases varied in order to maintain a constant study-test lag for the critical test 

items (those above the horizontal line in the figure).  Specifically, the total time between 

the first study item and the first test item was constant for each study-test block.   

Note that each participant receives one pure list (containing only one pair-type, as 

in List A in Figure 3) and two mixed lists (containing two pair-types, as in Lists B and C 

in Figure 3).  To equate the mixed lists for the average amount of switching between pair-

types and the average study-test lag, we constructed the mixed lists with the constraint 

that the first 20 pairs of each of these study lists (i.e., those above the horizontal line in 

Figure 3) included ten pairs of each type.  The test pairs were constructed from these 

study pairs as described next.   

  All test trials were AR, constructed as in Experiment 1.  The critical tests 

consisted of 10 intact and 10 rearranged pairs taken from the first 20 pairs of each study 

list.  In the cases where there were two types of pairs, half of the test items were from 
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each type.  To keep participants from noticing that items from certain study positions 

were never tested, one intact and one rearranged test were included from the second 

block of ten study items in List B, and two intact and two rearranged tests were included 

from the second study block of twenty items in List C (these tests were not analyzed).  

All tests pairs were randomly intermixed.   

Results & Discussion 

 The same basic pattern of data was obtained for the six between-participant 

groups (that varied only in the 2 pair-types used).  In the varied conditions, there was an 

interaction between category length and participant group on HR ( F(5, 319)=3.19, 

MSE=.04, p=.008) and a marginally significant interaction for da (F(5, 194)=2.21, 

MSE=.43, p=.055) both due to a larger effect of length for FF pairs.  There were no other 

significant interactions.  The different pair-types had different overall levels of 

performance but the main focus in this experiment is on the pattern of results across 

conditions.  We therefore present the data collapsed across group: HRs and FARs are 

shown in Table 3 and da is shown in Figure 4.3 

 The varied pair-type is a slightly modified replication of Experiment 1.  Holding 

the number of pairs of another type constant, adding pairs of the same type should harm 

discrimination.  As expected, we replicated the within-pair-type length effect.  As shown 

in the right two bars of Figure 4, discrimination was higher when the lists had 10 (light 

bar) pairs than when the list had 20 pairs (dark bar), F(1, 194)=6.16, MSE=.43, p=.014 of 

the varied type.  The change in discrimination is primarily due to a decrease in the HR as 

the number of pairs of the same type increased (F(1, 319)=24.57, MSE=.04, p<.001).  

The FARs did not change (F(1, 319)=.30, MSE=.04, p=.587).   
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 The constant pair-type is an extension of Experiment 1 where we ask: what is the 

effect of adding pairs of another type while holding the number of pairs of the same type 

constant?  FARs for the constant pair-types did not change across conditions, F(2, 

638)=.52, MSE=.03, p=.594 so the findings described below are manifest in da and the hit 

rates.  The main effect of list (0, 10, or 20 pairs of the other type) on both da and the hit 

rate was significant (F(2, 442)=31.09, MSE=.44, p<.001;  F(2, 638)=19.71, MSE=.04, 

p<.001, respectively), as such, post hoc analysis are reported below.   

 There are two primary findings.  First, consider the mixed lists (the lighter two 

bars on the left side of Figure 4).  We found no difference in discrimination as additional 

items of the other type were added to the study list (t(238)=.472, p=.637).  HRs mimic 

the pattern of da, as shown in Table 3.  That is, when the number of pairs is held constant, 

we find no difference between adding 10 pairs of another type and 20 pairs of another 

type (t(324)=1.373, p=.171). 

 In brief, adding pairs of the same type as the test pair harms performance but 

additional pairs of another type does not.  This supports a model where pairs of different 

types have distinct representations and are dissimilar to one another (despite sharing 

single items from the same class).  Further, the lack of interference of pairs as another 

type is added suggests that the number of single items does not alter AR performance 

(because adding pairs of another type must add single items).  This result suggests that 

single items and pairs are represented and retrieved separately.   

 Comparing the black bar to the two light bars on the left side of Figure 4 

demonstrates the second important finding: an advantage for pure lists (those containing 

pairs of a single type) over mixed lists.  Discrimination for the pure list was greater than 
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the list with an additional 10 pairs of another type (t(236)=7.78, p<.001) and the list with 

20 such pairs (t(249)=8.15, p<.001).  Again, this is largely due to a higher HR for those 

items in pure lists compared to mixed lists (for list B, t(324)=4.803, p<.001; for list C 

t(324)=6.518, p<.001).  Performance drops when pairs of another type are added, relative 

to a pure list, but the number of such pairs (10 or 20) does not matter (as described 

above).  By design, the amount of switching between pair-types at study and at test is the 

same for all test items from the mixed lists, so it appears that the drop in performance is a 

result of switching between two pair-types. 

Our data cannot distinguish whether such switching costs occurred at study or 

test.  A plausible argument can be made for an effect occurring at study.  The pure list 

advantage could be due to different strategies, one for each pair-type, for carrying out the 

incidental study instructions.  If some encoding time is lost in switching from the strategy 

for one type to the encoding strategy for another type, then switching between types 

would reduce performance compared with the case where switching does not occur.  This 

argument places the pure list advantage at study and is similar to those found in the task 

switching literature (e.g., Rubinstein, Meyer, & Evans, 2001; Sohn & Anderson, 2001).   

On the other hand, one could imagine that it takes time and effort to focus on the 

relevant subset of items in memory for each test probe.  For example, it might take time 

to construct a cue focusing on a particular pair-type, such as FF.  When tests alternate 

between types, this process could produce a deficit compared with the case when all tests 

were of the same type (as for the pure list).  Relevant evidence in the literature comes 

from studies of categorized free and cued recall (see Raaijmakers & Shiffrin, 1980 for a 

review) and from studies of the fan effect (e.g., Anderson & Reder, 1999; Anderson & 
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Neely, 1996).  In free recall, for example, there is a tendency to recall rapidly from one 

category (e.g., fruits), but then search slowly for another category to output (assuming the 

category names are not provided).  Similar processes may be at work in studies of the fan 

effect.  In these studies, participants learn (or pre-experimentally know) several facts 

related to some topic and these facts might fall into different sub-categories.  Such studies 

have shown that response times to verify facts depend on the number of sub-categories 

and the number of facts within the relevant sub-category, but not the number of items 

within the irrelevant sub-categories (Reder & Anderson, 1980; McCloskey & Bigler, 

1980).  We leave it to future research to determine whether the switching costs observed 

in the present study occur at study, retrieval, or both. 

General Discussion 

 We have shown that different classes of pairs do not interfere with one another 

during retrieval.  That is, AR performance is a function of the number of pairs of the 

same type and not the total list length.  Further, we have evidence suggesting that singles 

do not interfere with pairs during associative recognition.  As pairs of another type are 

added to the study list performance does not change, even though these pairs contain 

single items that are common to the test pair.  Both findings are inconsistent with current 

formulations of composite and concatenation models.  The concatenation models are not 

sufficient for this data because pairs are simply singles stored in the same memory trace 

and thus any manipulation changing performance for pairs must be similarly reflected in 

performance for singles.  Composite models are also unable to account for the current 

data but for a different reason.  While some of these models assume different (and 

orthogonal) memory traces for pairs and their constituent singles, these models assume 
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that all memory traces are summed into one memory trace.  This assumption forces 

interference to be a function of the total list length.  Next we discuss related data 

followed by a description of alternative representations that could be implemented in 

models in order to more fully account for the data.   

 The inference that single items and pairs maintain a form of functional separation 

is consistent with a number of previous studies.  As discussed earlier, item and 

associative recognition are differentially sensitive to instructions (Hockley & Cristi, 

1996a), have different forgetting rates (Hockley, 1992), and have different rates of 

improvement with study time (Clark & Shiffrin, 1992).  Judgments of frequency indicate 

that people are generally able to make separate judgments for pairs and singles, even 

when they share words in common (Hockley & Cristi, 1996b).  The present results fit 

nicely with this research, providing additional evidence for the separation of item and 

associative information during both storage and retrieval. 

 Another set of data posing problems for each of these model classes was obtained 

by Kelley & Wixted (2001).  Participants studied pairs 1 or 6 times and were tested with 

intact pairs, rearranged pairs, and new-new pairs, under instructions to call only intact 

pairs “old.” Two findings were of particular relevance.  First, the HR for strong pairs 

exceeded the HR for weak pairs but the weak and strong rearranged FARs did not differ.  

Concatenation models cannot account for this without additional assumptions because the 

strong rearranged test items will match their half-matching vectors more than the weak 

rearranged test items.  On the contrary, such a finding is consistent with a model like 

TODAM in which pairs are independent of the items from which they are constructed.  In 

this model pair AB is no more similar to pair AD with which it shares an item than to 
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another pair EF with which it shares no item (see Weber, 1988).  Thus, the strength of the 

relevant studied pair has no effect on the FAR.  Second, the (not differing) FARs to 

rearranged weak and rearranged strong pairs were greater than the FAR to new-new pairs 

(consistent with previous findings of Humphreys, 1976 and Clark & Shiffrin, 1992).  This 

finding is consistent with concatenation models.  When memory has two traces that half-

match the rearranged test pair, FARs should be higher than when memory has no traces 

that match the rearranged test pair at all.  But, this is not consistent with a composite 

model like TODAM for the same reason mentioned above.  Namely, the test pair is 

equally unrelated to a memory vector that incorporates two half-matching traces and a 

memory vector that contains no half-matches (Weber, 1988).   

 Data from Kelley & Wixted (2001), the current set of experiments, and the 

Hockley studies mentioned earlier seem to require some degree of independence between 

the representations of single items and pairs.  Depending on the details, such a model is 

likely to predict no difference in FARs to weak and strong rearranged pairs.  To account 

for the lower FAR to new-new foils than rearranged foils, one could simply assume that 

participants adopt a strategy when faced with such testing conditions.  First, each item is 

used as a probe.  If neither item matches memory, then a “new” response is given.  If at 

least one item matches memory, an associative probe is used (such as the convolution in 

TODAM) and a decision is made on the basis of that match.  Given the nature of the test 

items, this strategy seems sensible.  Gronlund and Ratcliff  (1989) and Nobel & Shiffrin 

(2001) have shown that time to discriminate new-new foils is faster than rearranged foils, 

perhaps lending some support to this type of model.  It should be noted that Kelley & 

Wixted claim their data is best explained in terms of competition between a familiarity 
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process and a recall-to-reject process.  We have explained their data in terms of a 

familiarity process with independent representations for single and pairs.  The growing 

importance of considering issues of representation in addition to the processes involved 

in AR is addressed further in the section titled “Recall Processes in AR.”  Data from the 

current set of experiments seem to require a more generous modification and we now turn 

to such extensions.   

 In general terms, what is needed is a way to represent varying levels of similarity 

even for items that seem nominally similar (i.e., that WF and WW pairs both contain 

words but nevertheless seem to be rather dissimilar).  The degree of similarity is assumed 

to be a joint function of encoding processes and the stimulus materials (see Criss & 

Shiffrin, 2004b for an example of how encoding tasks alter the word-frequency effect, 

another finding thought to be attributable to retrieval processes).  For example, as Paivio 

(1971) argued, visual and verbal materials may have different types of memory codes (or 

features).  However, pairs created from items within the same domain or items from 

different domains may also form dissimilar traces due to encoding processes.  The exact 

mechanisms leading to similar or dissimilar memory traces is left for future development.  

We simply illustrate three different representations that could arise from the unspecified 

encoding processes.   

 First, suppose that each of the classes (W, F, WW, WF, FF) is represented by the 

same features in the same region of the memory vector, but with values that are similar 

within class and dissimilar between classes.4 Suppose in addition that a pair is coded as 

three traces, one for each separate item, and one for the pair.  An example of the traces 

stored in memory for study of a WF pair is shown in the top panel of Figure 5.  Here 
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features identifying the list context are stored with each trace and are denoted C.  A test 

of any type will strongly match the traces that encode that type, and weakly match the 

others.  Note that this is similar to a representation proposed in Murdock (1982; Model 

4).  Our proposal simply requires varying degrees of similarity be built into the sets of 

memory traces.  Namely, traces are similar within class but not between.  How to best 

implement varying degrees of similarity is unclear.  For example, the REM model 

(Shiffrin & Steyvers, 1997) has a natural floor to dissimilarity when features are chosen 

randomly.  Under these circumstances, the likelihood ratio approach implemented in 

REM has a natural and optimal criterion for making an old/new decision.  For a given 

item to be more similar to other items of its own type than another type, the within-class 

similarity must be greater than random.  This means that within-class foils will have high 

matching values and a higher criterion would be needed.  Although plausible, this 

assumption loses one advantage of the likelihood ratio approach, the optimal criterion 

setting.  Most other models also assume that items are only randomly similar and straying 

from this assumption may require substantial changes in the proposed mechanisms.   

A closely related representation assumes that pair features are distinct for each 

type of pair and different from single item features.  The idea is to use separate regions of 

feature values in the representation for different item types.  For the present application 

there would be six regions: one for context, C, and one region for each of W, F, WW, FF, 

and WF, as shown in the first row of the middle panel in Figure 5.5 For storage of a WF 

pair, as shown in the second row of the middle panel in Figure 5, the regions in which 

feature values would be stored would be C, W, F, and WF.  It is convenient to elaborate 

the vector to be a matrix, so multiple items of the same type can be stored in the same 
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event (e.g., two Ws would need to be stored for a WW pair).  This extension can be 

thought of as an extension of Model 2 proposed in Murdock (1982) where memory was 

assumed to consist of two composite vectors; one for singles and one for pairs.  It is 

possible to implement this type of representation in both classes of models without much 

problem.  One benefit of this model is that it allows a single memory trace (which would 

take the form of a matrix in REM for example) to represent a complex event, whereas the 

other models break one event into separate traces.  Though these first two representations 

are similar in many respects, in the separate feature model just described, the concept of 

feature (and feature value) is more strongly reified because different item types are 

assigned different features.  One can imagine techniques used to derive actual features 

used to encode faces and words (e.g., Steyvers, 2001; Griffiths & Steyvers, 2003; 

Landauer & Dumais, 1997) and it seems plausible that these will differ in kind.   

 Finally, consider a representation that makes use of type-codes: Suppose that a set 

of common features is used to encode all item types and these have equal between- and 

within-type similarity.  However, in addition to these features and those encoding list 

context, suppose there is a region of features used to encode the type (i.e., whether the 

stored item is WW, WF, FF, etc.).  An example of the traces stored for a WF study pair is 

shown in the bottom panel of Figure 5.  This representation is straightforward in 

concatenation models.  In order to have just one type-code per trace, it is simplest to 

assume three separate traces for each studied pair: one for each item of the pair and one 

for the pair itself.  At retrieval, list context and type-code are first used as probes to 

activate a subset of list traces for that type of item (followed by matching the item 

features as usual).  The type cue would tend to activate only the traces of that type and 
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length effects would be restricted to the test type.  For composite models, the use of this 

representation could be implemented in a 4-way convolution (in TODAM, or a 4-way 

matrix multiplication in the Matrix model) including each item, the list context, and the 

type-code.  Note the use of a type-code could apply to any number of attributes of a study 

item such as the gender of the voice producing the study word.  Underwood (1969) 

discusses a similar concept (“class attributes” in his words).  In support of this notion, he 

used the example that when searching for a technical term, one does not generate the 

name of a colleague.  In some sense, explicitly using type-codes (or class attributes) is 

one step toward defining context and separating it into its component parts.   

 Any of the representations discussed above, if implemented in extant models, 

would have the property of both separating pairs from the singles from which they were 

constructed and likewise separating various sub-classes from each other.  As such, these 

representations are able to handle the data discussed earlier showing the separation of 

items and pairs during both storage and retrieval.  The Kelley & Wixted (2001) study 

requires the additional assumption that a strategic use of item information may be evoked 

when test items include new-new foils.  In this strategy, each item is first compared to 

memory.  Pairs are rejected if both single items are below some familiarity criterion.  If 

either single item exceeds this criterion, memory is probed with the associative code and 

an intact-rearranged discrimination is made. 

Recall Processes in AR 

 So far, we have assumed for simplicity that AR involves decisions based on a 

recovered familiarity value (cf., Dyne, Humphreys, Bain, & Pike, 1990).  However, there 

may be reasons to think that AR is carried out with a recall-like process.  If this is correct, 
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could the proposed representational approach fit the present results?  The answer depends 

on the cue used to probe memory.  If the test pair is coded in terms of associative features 

and these are used to probe memory (i.e., for a WW test pair, only the WW features are 

used to probe memory), then sampling would tend to be restricted to items of the same 

type and produce the correct length or null-length effects.  In other words, if an 

associative cue is used, regardless of whether a familiarity or recall process or some 

combination is used, length effects will depend on the similarity between the cue and 

cues of the same type (assuming any one of the above representations is adopted).  On the 

other hand, many have proposed recall models in which the memory probe is one of the 

individual items comprising the pair, akin to cued recall (e.g., Rotello & Heit, 2000; 

Rotello, Macmillan, & Van Tassel, 2000; Shiffrin & Steyvers, 1998).  In this case, 

sampling would be based on all traces that contain the single item feature in the probe.  

For example, a WW test would involve probing with a single W, activating all traces 

containing W features.  Thus, length effects would clearly depend on the number of WW 

and WF traces, not in accord with the present findings.  In conclusion, our data do not 

permit a clear choice between a recall and a familiarity-based model of AR.  What is 

clear is that any successful model will need to incorporate some form of the 

representational assumptions we have proposed.   

 Several studies have suggested that recall processes are involved in SR and/or 

AR.6 For example, the Nobel and Shiffrin (2001) data exhibited a much closer match 

between reaction time distributions for AR and cued recall than between AR and SR.  

These findings were interpreted to imply that both AR and cued recall involved an 

extended search process producing slow retrieval.  This is however, suggestive rather 
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than definitive, because the slow time course of retrieval in AR could be due to the time 

required to generate the associative encoding that is used to probe memory.  In fact this 

generation-time argument could be used to explain slow AR response times, even when a 

familiarity model is assumed (see Gronlund & Ratcliff, 1989 for a similar proposal).  

Thus the Nobel and Shiffrin (2001) results do not provide definitive evidence that could 

be used to assess these issues.   

 One other source of relevant evidence concerning AR comes from studies of 

forced-choice AR.  Clark, Hori, and Callan (1993) presented pairs (AB, CD, EF, GH, IJ, 

etc.) for study and gave a 3-AFC test.  The OLAP condition contained choices that shared 

a studied item such as AB, AD, AF.  The NOLAP conditions contained choices not 

sharing any items such as AB, CF, and GJ.  If, as our present data suggest, AB coding is 

unrelated to A coding, then AB coding might be unrelated to AC coding.  If so our 

present approach would predict no difference between NOLAP and OLAP.  Clark et al.  

(1993) found a NOLAP advantage and argued that this was due to the use of cued-recall - 

the NOLAP case provides more single items to use as cues.  However, Clark and Hori 

(1995) found similar performance for NOLAP and OLAP for longer study lists and 

suggested the participants may have abandoned the single-item probe strategy.  It may be 

that our designs were similar in that they prevented participants from using a single-item 

probe recall strategy.   

In summary, the representational approach we have suggested is consistent with 

the extant literature even if AR is carried out by a recall process, as long as the recall 

probe is comprised of configural pair information.  This discussion highlights the 

importance of considering both representation and process.  Many recent articles have 
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drawn conclusions regarding the processes underlying AR (e.g., see Macho, 2004 for a 

review of several recent examples) without much regard for the representation.  These 

proposals are incomplete without equal consideration of the underlying representation.  

Here, we have outlined three different representations that could be adopted in any extant 

model to form a more complete model of AR.   

Summary 

 Interference, measured by list length effects, was found within each class of items 

(F, W, WW, FF, WF) but not across classes.  In addition, switching between pair-types 

harmed performance.  The results were taken to imply separate representations for these 

various types of items and pairs.  Several methods were discussed by which different 

representations could be achieved and implemented in several GMMs. 
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Footnotes 

1 Our measure of discrimination, da (Macmillan & Creelman, 1991) requires use 

of the slope of the zROC calculated for each condition for each participant.  Due to a 

small number of observations per condition and idiosyncratic use of the confidence scale, 

the slope is sometimes undefined.  In such cases, da cannot be calculated and that 

participant is eliminated from the analysis for the relevant comparisons.  To be sure that 

the patterns of data presented in this paper were not due to violations of the assumptions 

required by da or to the elimination of those participants with undefined slopes for one at 

least one of the conditions being compared, we analyzed the data for each experiment 

using the following methods: d-prime (Green & Swets, 1966), G (Nelson, 1984), A’ 

(Pollack & Norman, 1964), and H-FA.  All the measures we used resulted in the same 

pattern of discrimination (though tests of significance sometimes varied), confirming the 

robustness of the findings.  We will provide these analyses upon request. 

2  Restricting the data to a subset of test trials resulted in elimination of additional 

participants due to elimination of participants with undefined slopes (see Footnote 1).  

This loss of power is the likely reason these statistical tests are less reliable despite 

showing the same qualitative pattern.   

 3 A complete table of values is available upon request.    

 4  An unpublished study had participants study single faces and words.  The results 

showed no cross-class interference.  That is, while adding words to a list harmed 

performance (i.e., da) for words, additional words did not harm performance for faces.  

Likewise, study of additional faces harmed performance for faces but not for words.  This 

lead us to a model where faces and words were stored separately.   
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 5   It is intriguing to note that fMRI studies have shown different areas of the 

hippocampus are active during encoding of faces, names, and face-name pairings (Small 

et al., 2001) and different areas are active during the encoding and retrieval stages of 

learning face-name pairs (Zeineh, Engel, Thompson, & Bookheimer, 2003).  However, 

topographic separation does not necessarily imply functional independence. 

6 Another main line of support for the use of recall in AR comes from studies of 

the shape of the ROC.  Yonelinas (1997; Yonelinas, Kroll, Dobbins, & Soltani, 1999) has 

obtained linear rather than curvilinear ROCs in AR tasks and used such a finding to argue 

for the use of a recall process (but see Kelley & Wixted, 2001 for evidence of curvilinear 

ROCs in AR).  We used our confidence rating data to produce ROC curves, and observed 

curvilinear ROCs in all conditions.  We do not present these findings in this article 

because they are not informative.  Curvilinear ROCs are not as diagnostic as linear ones, 

because they could arise due to the presence of a wide variety of noise and guessing 

processes, even if the underlying retrieval process was based on recall (Malmberg, 2002).   
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Table 1.   

Associative Recognition Hit and False Alarm Rates for Experiment 1. 

Number of Study Pairs HR FAR 

FF 

40 .49 (.04) .31 (.03)

30 .46 (.03) .24 (.02)

20 .53 (.02) .25 (.02)

WW 

40 .67 (.03) .23 (.02)

30 .70 (.02) .22 (.02)

20 .70 (.02) .24 (.02)

WF 

80 .69 (.02) .23 (.02)

60 .71 (.02) .18 (.02)

40 .73 (.02) .18 (.02)
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Table 2.   

Single Item Recognition Hit and False Alarm Rates for Experiment 2. 

 

 

 

 HR FAR 

Faces 

Group A (40WF, 40WW, 40FF) .72 (.02) .36 (.03) 

Group B (60WF, 30WW, 30FF) .71 (.02) .34 (.03) 

Group C (80WF, 20WW, 20FF) .68 (.02) .31 (.03) 

Words 

Group A (40WF, 40WW, 40FF) .73 (.02) .19 (.02) 

Group B (60WF, 30WW, 30FF) .73 (.02) .16 (.02) 

Group C (80WF, 20WW, 20FF) .73 (.02) .16 (.02) 
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Table 3.   

Associative Recognition Hit and False Alarm Rates for Experiment 3.   

 HR FAR 

Constant Pair Type   

0 Others .73 (.01) .20 (.01) 

10 Others .66 (.01) .21 (.01) 

20 Others .64 (.02) .20 (.01) 

Varied Pair Type   

10 .76 (.01) .21 (.01) 

20 .68 (.01) .20 (.01) 
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Figure Captions 

Figure 1.  Discrimination in associative recognition as a function of pair-type (FF, WW, 

or WF) and number of studied pairs of the same type in Experiment 1.  The number under 

each bar indicates the number of studied pairs of that type.  Error bars in all graphs 

represent one standard errors above and one below the mean.   

Figure 2.  Discrimination for single item recognition of Experiment 2 as a function of the 

item type and the experimental group.  Note that Group A studied 40 of each pair-type, 

Group B studied 60WF, 30FF, and 30WW and Group C studied 80WF, 20FF, and 

20WW.   

Figure 3.  The basic design for Experiment 3 is depicted.  In this example, WF is the 

constant pair-type and FF is the varied pair-type.  List A is a pure list and Lists B and C 

are mixed.  The comma indicates that those sets of pairs are randomly intermixed during 

study.  Test pairs are constructed from those study pairs above the horizontal line.  See 

the text for further explanation.   

Figure 4.  Discrimination as a function of study condition for Experiment 3. 

Figure 5.  An example of each of the three alternate representations described in the text.  

Each panel shows the stored memory traces following study of a WF pair.  The set of 

features identifying the list context is denoted C.  The top panel illustrates the model with 

high within-type similarity and low between-type similarity.  The middle panel illustrates 

the separate regions model.  The general representation is shown in the first row followed 

by an example for study of a WF pair in the second row.  The bottom panel illustrates the 

type-code model.   
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List A List B List C 

20 WF 10 WF, 10 FF 10 WF, 10 FF 

Puzzle activity 10 WF 10 WF, 10 FF 

Puzzle activity Puzzle activity Puzzle activity 

AR test AR test AR test 
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[  W1F1 C  ]
[   W1 C  ]
[   F1 C  ]

[   W    F   WW   FF     WF    C   ]
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Part II 

 

 

Three-phase Recognition for Single Items and Associations 
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A frequently pursued question in many domains within psychology is whether a 

set of features more than a simple sum of its parts (e.g., Asch, 1969; 1964).  Within the 

domain of human memory, this question has taken the form: Is the association between 

two items stored as the simple co-occurrence of the two items or as an emergent set of 

features?  Each of these assumptions has been adopted in extant competing models.  For 

example, models such as REM (Shiffrin & Steyvers, 1997) or MINERVA (Hintzman, 

1988) have adopted the co-occurrence assumption and represent an association as a 

concatenation of the two vectors representing each of the two singletons.  Models 

including the theory of distributed associative memory (TODAM; Murdock 1982; 1997) 

and CHARM (Metcalfe-Eich, 1985) assume an emergent representation and model it as a 

third vector that is independent of either of the vectors representing the singletons.   

Early empirical work addressing this issue focused on paired-associate learning.  

Many studies were developed to uncover the conditions where learning A-C interferes 

with previously learned pairs A-B or D-C (where the first letter represents the word given 

as a cue and the second letter represents the response to be generated by the participant, 

e.g., Postman, 1976; Greeno, James, & DaPolito, 1971; Melton & Martin, 1972).  The 

general strategy was to understand the underlying representations by measuring 

interference (a strategy we adopt in the present research, albeit in different form).  The 

hypothesis that pairs were stored as emergent configurations was supported if learning A-

C did not harm memory for A-B or D-C.  The competing hypothesis was that an 

association was simply a link or connection between two existing items in memory with 

the level of interference determined by the number and strength of these links.  Different 

sets of data favored each hypothesis.  For example, some found positive transfer occurs if 
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the cues are related to one another.  That is, performance for A-C is better following 

learning of B-C when A & B are related (e.g. Greeno, James, DaPolito, & Polson, 1978).  

On the other hand, negative transfer sometimes occurred when the cue was repeated with 

a new response unrelated to the previous response (e.g. Greeno, et al., 1971; Martin, 

1968).  That is, performance for A-C is worse following study of A-D when D and C are 

unrelated.  This is often attributed to "persistence in encoding" or the idea that once an 

item is encoded in a particular way, it tends to be encoded in a similar manner in future 

study episodes.  However, the empirical support for each of these was only marginal.  

Studies have found the opposite of each (i.e., McGeoch, 1942; Greeno et al, 1978) and 

other studies found a decrement in performance when any member of the pair is repeated 

(Rock & Ceraso, 1964).  This lack of a clearly interpretable picture surely contributed to 

decades of neglect of the issue in question, especially in the domain of paired-associate 

learning.   

In the last several years, these issues have been studied with new paradigms, most 

prominently, associative recognition (AR).  In AR, participants study pairs (AB, CD) and 

are tested with intact (AB) pairs and rearranged (AD) pairs.  To be successful in this task, 

participants must be able to judge whether the two items occurred together.  In a typical 

design, the familiarity of any individual item is irrelevant because both items have been 

studied for all test pairs.  There are two primary assumptions about how a pair of items is 

stored in memory: the co-occurrence assumption or the emergent feature assumption, 

both described earlier.  A few studies have tried to distinguish these approaches using the 

AR paradigm (e.g., Clark, Hori, & Callan, 1993; Hockley & Cristi, 1996a, 1996b; 

Kahana, 2002; Part I, see Clark & Gronlund, 1996 for a review of such studies).  
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 Recently however, with the resurgence of dual process memory models, the focus 

has been on whether AR is carried out by a recall or familiarity based process.  For 

example, AR requires more time for retrieval (Gronlund & Ratcliff, 1989; Nobel & 

Shiffrin, 2001) than SR and sometimes produces ROCs that match those generated by 

recall-based models (Rotello & Heit, 2000; Rotello, Macmillan, & VanTassel, 2000; 

Yonelinas, 1997).1  Note that unlike free or cued recall where the response must be 

generated, both items of the test pair are given to the participants in AR.  Thus according 

to many models it should be possible to simply match the test probe to memory and 

forego a recall/search process.  In these models it is not a necessity that a search process 

be adopted for AR, and one might then wonder why a recall/search process is used given 

that it is more effortful (some possible answers were discussed by Nobel and Shiffrin, 

2001 and Diller, Nobel, and Shiffrin, 2001).  Whether or not a recall/search process is 

used for AR, it is important to consider the possibility that different representations for 

pairs and single items might provide a principled way to account for some findings 

typically attributed to the underlying retrieval processes.    

Here, we continue to explore the underlying representations for associations and 

single items and the relationship between the two.  In Part I we used the presence or 

absence of interference as a way to measure similarity of representation.  We mixed 

various classes of items in one list and noted that for AR, performance is determined by 

the number of items within one class.  Specifically, we found that word-word pairs 

(WW), word-face pairs (WF), and face-face pairs (FF) did not interfere with one another, 

even though we found interference within each class.  For example, performance for WF 

pairs is determined solely by the number of studied WF pairs.  Adding WW or FF pairs to 



 

 47

the study list has no influence on WF performance (likewise for all three types of pairs).  

To the contrary, pair-type did not influence single item recognition (SR).  These findings 

are not consistent with extant quantitative memory models because such models assume 

some overlap of representation and therefore predict between-class interference.  In co-

occurrence models pairs are composed of the same features as the singles from which 

they are composed and both must show the same pattern of interference.  In models 

assuming emergent pair features pairs and singles contain different information but 

nonetheless are combined into a single composite memory vector and thus all studied 

items contribute to the memory decision.2  Thus, we suggested modifications that could 

be implemented in any extant model in order to account for the pattern of data.  

Specifically, we adopt the following assumptions: pairs of various types are stored with 

dissimilar representations.  However, regardless of the pair-type in which they appear, 

singles are stored in a fashion determined by the type of single item, rather than the pair-

type.  Finally, pair features are emergent in that they are not the same as the single item 

features. 

In this article we measure similarity of representation with the presence or 

absence of any interaction between different stimulus types.  In this approach we do not 

infer similarity of representation of classes of stimuli from a decrease in memory 

performance, but instead from any change in memory performance that depends on the 

stimulus type.  In particular, the current set of studies adopt a 3-phase design (e.g., Criss 

& Shiffrin, 2004a;  Maddox & Estes, 1997) in which two lists of items are studied.  Some 

items and some pairs repeat between the study lists, but a recognition memory test is 

specific to the most recent list.  An "old" response is to be given if a test item had been on 
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the second list, but not if the test item had been on list one only.  Items are presented on 

either list or both lists in such a way that we can measure the contribution of pairs of the 

same type compared to the contribution of pairs of a different type.   

Aside from the approach in Part I, using interference to draw conclusions about 

the type of stored representations is not a novel strategy.  For example, many have used 

this technique to show the existence of separate visual and verbal codes in memory.  A 

famous example is that of Brooks (1968).  He showed Ss a block letter or a sentence and 

asked them to report from memory whether each corner of the letter was an internal edge 

or whether each word of the sentence was a noun.  The nature of the response was 

manipulated in order to measure interference.  Participants either pointed to a Y or N on a 

sheet of paper or said “yes” or “no” aloud for each corner of the block letter or each word 

in the sentence.  The verbal response caused most difficulty for the sentence condition 

and the manual response caused most difficulty for the block letter condition.  Thus it 

seems that verbal and visual information are represented separately and the same type of 

information causes the greatest level of interference.  We take this thesis farther and 

propose that different types of pairs (that overlap in verbal and visual information) are 

stored in a dissimilar fashion such that a memory decision is based only on the same type 

of pair with no contribution of different pair-types, even when the different pair-types 

share an identical item.    

The effects in Part I were reliable but small in magnitude.  Additional verification 

is needed because the conclusions are far reaching and the data call for revision of 

existing models.  Here, we focus on two related goals.  The first goal is to replicate these 

findings with a quite different and in some respects stronger experimental paradigm.  
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Second, we hope to better understand the relationship between the stored representation 

of single items and associations, when these units of analysis share the same items.   

Experiments 1 & 2 

Adding pairs of the same type harms AR performance, but adding pairs of a 

different type does not.  On the contrary, SR performance is determined by the total 

number of single items and not affected by the relative number of each pair-type (Part I).   

In these studies no items repeated, so direct interference was not measured.  Instead, 

interference, as measured by within-class list length effects, was caused by adding other 

pairs to the studied list.  We drew strong conclusions concerning the similarity of 

representation and the present study attempts to verify and strengthen these conclusions 

through use of a quite different paradigm.  In the present experiments, therefore, we use 

two lists at study,   repeating some items and some pairs across the two lists.  The 

participant is asked to respond "old" only to test items (pairs in Experiments 1 & 2 or 

singles in Experiments 3 & 4) from the second list.  This design allows us to measure 

changes in performance that occur when items are repeated in the same type of pair 

(Experiment 1) compared to when items are repeated in a different type of pair 

(Experiment 2).   

In order to confirm our previous findings, we should find an interaction such that 

single items repetitions affect performance only when they occur in the same pair-type 

but not when repetitions cross pair-types.  A model for this task is needed to specify 

whether such an interaction should take the form of a change in discrimination, a change 

in bias, or both.  However, one other study is informative.  Dyne, Humphreys, Bain & 

Pike (1990) showed that repeating items between pairs (all WW pairs) within a single 
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study list results in an increase in the probability of calling the test item "old" (P(old)) but 

no change in discrimination.  They showed that a number of models predict this pattern 

because pairs with repeated items were more familiar but this was equally true for both 

intact and rearranged test pairs.  An increase in P(old) in the present study would 

obviously be consistent with the Dyne et al.  results.   

Finding an effect of having presented a study item on an earlier list only when the 

repetition was in the same pair-type but not in a different pair-type would considerably 

strengthen the conclusions from our previous studies.  Previously, we found no 

interference from other items that were presented in different pair-types.  Here, we look 

for no contribution of an identical item when it was studied in a different pair-type.  This 

study relies on the fact that participants have difficulty rejecting single items that were 

presented on study lists other than the one being tested (e.g., Criss & Shiffrin, 2004a;  

Hintzman, Caulton, & Levitin, 1998).  However, we know of no study that tests AR in a 

similar paradigm.  Thus, we also test single item recognition (Experiments 3 & 4) in 

order to compare the patterns of data between AR and SR.    

In the following four studies, participants will study two lists under incidental  

study instructions.  For Experiments 1 (AR testing) & 3 (SR testing), single items will be 

repeated in the same type of pair across lists.  For Experiments 2 (AR testing) & 4 (SR 

testing), single items will be repeated in different types of pairs across lists.   

Experiment 1 

Methods 

Participants 
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 Eighty-one people from the Indiana University community participated in the 

experiment in exchange for partial course credit or $7.00 per hour.   

Materials 

  Black and white photographs of faces were selected primarily from college 

yearbooks and from the Olivetti Research Database of Faces (AT & T, Cambridge, 

1994).  Each of the 210 faces was standardized so that the head orientation, level of the 

eyes, and position of the chin were identical and there was very little (if any) background.   

The set of words contained 476 hard to image words of varying environmental frequency 

(M=18.49; range 1-245, Kucera & Francis, 1967).  Any words that might describe a face, 

a person, or a characteristic of either were excluded.   

Procedure 

Participants received two study lists separated by an unfilled break of at least 120 

sec.  On each trial, participants had 3 sec during which they performed an incidental task 

that involved rating each pair on the following question: “Do these two items go 

together?” Each study trial was separated by a 500 msec inter-stimulus interval (ISI).  

Following the final study list, participants were engaged in a 45 sec math task before 

beginning an unexpected memory test.  The first study list contained 52 pairs of items 

and the second contained 60 pairs.  Prior to the 72 trial test list, participants were given 

examples of all the possible types of targets and foils and instructed to say "old" only to 

intact pairs from List 2 and to say new to all other pairs.  Note that the above details are 

identical for Experiments 1 & 2. 

Design 
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 List 1 contained 52 WF pairs.  The nature of the 60 List 2 pairs was varied 

between experiments.  In Experiment 1, the same condition, List 2 contained all WF 

pairs, with an equal number of studied pairs in each of the following conditions: studied 

only on List 2, studied in the exact same pair in List 1 and List 2 (Lists 1 & 2 exact), 

studied on List 1 and 2 but in different pairs (Lists 1 & 2 re-combined).  Twelve intact 

pairs (targets) and eight rearranged pairs (foils) were tested from each of these three 

conditions.  Twelve additional foils were constructed by testing pairs from List 1.  Six of 

these were an exact match to a pair studied during List 1 but were foils because they were 

not studied on List 2 (List 1 intact).  The other six were constructed by making a 

rearranged pair from items that were only presented on List 1.  These foils could be 

called new either because they were not on List 2, because they were not presented 

together, or for both reasons (List 1 rearranged).  Table 1 contains an example of all the 

test conditions.   

 The construction of the Lists 1 & 2 re-combined study pairs differed between-

subjects.  Assume the pairs AB, CD, EF, GH, etc.  were studied in List 1.  For one group 

(N=41), two resulting re-combined pairs would be AD and CB.  That is, both items from 

two studied pairs in List 1 were re-combined to form two studied pairs in List 2.  For the 

other group (N=40), an item from one studied pair could be paired with any item from 

another pair except that there were no cases of type of pairing described above.  If a 

participant notices that an item repeats and believes this to be important, they may 

rehearse the previous pairing or form some sort of chain (e.g., sentence) linking the 

previous pair combination with the current items.  If this were the case, we might expect 

different performance based on how the re-combined pairs were constructed.  For 
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example, in the case where AB and CD are re-combined to form AD and CB, it would be 

easier to form some sort of chain between the items because they are re-combined in a 

consistent and obvious manner.  We used an incidental study design to reduce the 

likelihood that Ss engage in such strategies.  Comparing these two groups will allow us to 

access the extent to which our use of incidental instructions were successful.  Studied 

pairs always occurred side-by-side and test pairs were always presented one above the 

other with no relationship between the study and test position.    

Results 

 For hit rates (HR), a 3 x 2 mixed-design analysis of variance (ANOVA) was 

conducted with study condition (List 2, List 1 & 2 exact, List 1 & 2 re-combined) as the 

within-subjects variable and group as the between-subject variable (differing only in the 

construction of the Lists 1 & 2 re-combined pairs).  For false alarm rates (FAR), a 5 x 2 

mixed-design ANOVA was conducted with study condition (List 2, List 1 & 2 exact, List 

1 & 2 re-combined, List 1 intact, List 1 rearranged) as the within-subjects variable and 

group as the between-subject variable.  There were no main effect of group (for hits F(1, 

79)=2.232, MSE=.100, p=.139 or  false alarms F(1, 79)=0.212, MSE=.119, p=.646) and 

no interactions between study condition and group (for hits F(2, 158)=0.061, MSE=.020, 

p=.940 or false alarms F(4, 316)=0.794, MSE=.030, p=.794), where the groups differed 

only in the manner in which re-combined study pairs were constructed.  Thus the data are 

presented collapsed over this variable.  It seems that our incidental study task was 

effective in eliminating any tendency to rehearse previous study pairs.   

There was a main effect of study condition on the hit rates (F(2, 158)=25.40, 

MSE=.001, p<.001).  Bonferroni adjusted post-hoc tests confirmed the order apparent in 
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Figure 1.  Namely, the hit rate was highest for the List 1 & 2 exact condition (M=.680, 

SEM=.023) followed by Lists 1 & 2 re-combined condition (M=.595, SEM=.024), 

followed by the List 2 condition (M=.520, SEM=.025).  There was also a main effect of 

study condition on the false alarm rates (F(4, 316)=16.392, MSE=.030, p<.001).  Post-

hoc tests confirmed the apparent trends in Figure 1.  False alarm rates in those two 

conditions where items appeared in both Lists 1 and 2 were higher than the FARs to 

rearranged pairs constructed from items appearing only on one list.  However, there was 

no difference in FARs for the List 1 & 2 exact condition (M=.259, SEM=.025) and the 

Lists 1 & 2 re-combined condition (M=.277, SEM=.028).  Similarly, FARs to those 

rearranged foils whose items appeared on only one study list, either List 1 only (M=.171, 

SEM=.021) or List 2 only (M=.184, SEM=.021) did not differ.  FARs to intact pairs from 

List 1 were numerically greater than FARs for any other condition (M=.362, SEM=.026), 

however statistically the List 1 intact FAR is different from all conditions except List 1 & 

2 re-combined.   

Observation of the hit and false alarm rates suggests that presenting single items 

on both lists in different pairs of the same type does not harm discrimination relative to 

presenting items only on List 2.  Both the hit rate and the false alarm rate for the Lists 1 

& 2 re-combined condition are greater than the List 2 condition and by approximately the 

same amount (.075 for the HR and .093 for the FAR).  Thus, in signal detection terms, it 

appears that there is a bias to call a test pair "old" if the items had appeared on multiple 

lists.  However, the situation is different for the Lists 1 & 2 exact condition.  Again, the 

hit and false alarm rates are greater than the List 2 condition, but now the magnitude of 

the hit rate difference (.16) is much greater than the FAR difference (.082).  This seems 
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to indicate that encoding of a pair improves when given a second opportunity, in 

conjunction with the previous conclusion that participants are more willing to call a pair 

old if its members had been studied on multiple times.  Measures of discrimination 

confirm these observations.  We computed d' from the HR and FAR of the List 1 & 2 re-

combined condition, from the HR and FAR of the Lists 1 & 2 exact condition, and from 

the HR and FAR of the List 2 condition.3 The resulting values are shown in Table 2.  A 

repeated-measures ANOVA showed a main effect of condition (F(2, 160)=5.641, 

MSE=.417, p=.004).  Bonferroni adjusted post-hoc tests confirmed what is described 

above, no difference in d’ for the List 2 condition (M=0.998, SEM=.096) and the List 1 

& 2 re-combined condition (M=0.937, SEM=.095) but superior discrimination for the 

Lists 1& 2 exact condition (M=1.258, SEM=.103).   

In summary, when items being tested in AR were repeated in the same type of 

pair in a prior study list, participants are more willing to call the test pair old, regardless 

of its actual status.  If the test items were presented in an identical pair on both lists, this 

still exists in addition to an even higher hit rate, indicating improved encoding for twice 

presented pairs.  Intact foils from List 1 have a very high false alarm rate, indicating a 

lack of perfect list discrimination, as is typical in single item recognition.  Experiment 2 

contrasts these findings to the case where items are repeated in different types of pairs.    

Experiment 2 

Methods 

Participants 

 Fifty-eight people from the Indiana University community participated in the 

experiment in exchange for partial course credit or $7.00 per hour.   
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Materials 

The materials were identical to Experiment 1. 

Procedure 

The procedure was identical to Experiment 1.   

Design 

List 1 contained 26 WW and 26 FF pairs.  The 60 List 2 pairs, all WF, contained a 

subset of those conditions found in Experiment 1 due to the constraint that a pair could 

not be repeated exactly on List 2 given that List 2 did not contain the same type of pair as 

those presented in List 1.  An equal number of study pairs came from each of the 

following conditions: studied only on List 2 and studied on List 1 and 2 but in different 

pairs (Lists 1 & 2 re-combined).  Eighteen intact pairs and twelve rearranged pairs were 

tested from the two conditions described above.  In addition, 12 foils were constructed by 

making a rearranged pair from items that were only presented on List 1.  These foils 

could be called new either because they were not on List 2 or because they were not 

presented together or for both reasons (List 1 rearranged).  Table 3 contains an example 

of all the test conditions.   

 The construction of the List 2 re-combined pairs differed between-subjects in 

exactly the same fashion as Experiment 1.  For one group (N=32), all four items from any 

two studied pairs in List 1 were re-combined to form two study pairs for List 2.  For the 

other group (N=26), an item from one studied pair could be paired with any item from 

another pair except and there were no cases of type of pairing just described.   

Results 
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For the hit rates, a 2 x 2 mixed-design ANOVA was conducted with study 

condition (List 2 and List 1 & 2 re-combined) as the within-subjects variable and group 

as the between-subject variable.  For FARs, a 3 x 2 mixed-design ANOVA was 

conducted with study condition  (List 2, List 1 & 2 re-combined, and List 1 rearranged) 

as the within-subjects variable and group as the between-subjects variable.  There were 

no significant main effects of group (for hits F(1, 56)=0.557, MSE=.079, p=.459 or  false 

alarms F(1, 56)=0.070, MSE=.043, p=.792) and no significant interactions between study 

condition and group (for hits F(1, 56)=1.029, MSE=.015, p=.315 or false alarms F(2, 

112)=0.363, MSE=.014, p=.696), where the groups differed only in the manner in which 

re-combined pairs were constructed.  Thus the data are presented collapsed over this 

variable.  Again, this may indicate that the incidental nature of the study task was 

effective, as Ss do not seem to be rehearsing previous pairings of the study items.   

Hits and false alarm rates are pictured in Figure 2.  The hit rates for the List 2 

condition (M=.533, SEM=.028) and Lists 1 & 2 re-combined conditions (M=.570, 

SEM=.029) did not differ, F(1, 56)=2.649, MSE=.015, p=.109.  False alarm rates differed 

by study condition (F(2, 112)=10.701, MSE=.015, p<.001).  According to Bonferroni 

adjusted post-hoc tests, both conditions that appeared on List 2 had similar FARs (for 

List 1 & 2 re-combined M=.228, SEM=.023; for List 2 M=.222, SEM=.020) and they 

were both greater than the FAR to List 1 rearranged foils (M=.137, SEM=.018).  Given 

that there is no difference between HR or FAR to the List 1 & 2 re-combined and the List 

2 conditions, we expect no difference in discrimination.  Indeed, an analysis of d', 

reported in Table 2, showed no significant differences between the conditions ( F(1, 

57)=1.305, MSE=.238, p=.258).   
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Comparison of Experiments 1 & 2 

 We have noted that when items are repeated in the same type of pair, Ss are more 

willing to call the resulting test pairs "old" regardless of their actual status (i.e., 

Experiment 1).  However, when item repetitions occur in a different type of pair, we see 

no such contribution of the repetitions (i.e., Experiment 2).  In order to draw stronger 

conclusions about this interaction, we now directly compare the corresponding conditions 

of the two experiments.  A 2 x 2 x 2 mixed designs ANOVA was computed with 

experimental group as the between-subjects factor and condition (List 1 & 2 re-combined 

and List 2) and test type (target or foil) as the within-subject factors.  To confirm the 

individual analyses, we should find an interaction between experiment and condition such 

that P(old) is greater for the List 1 & 2 re-combined condition relative to the List 2 

condition only when the items repeat in the same type of pair and no such effect when 

items repetitions occur in a different pair-type.   Indeed, we do find this interaction 

between experimental group and condition F(1, 137)=9.803, MSE=.022, p=.002.  In 

addition, we find main effects such that P(old) was higher to targets than foils and the to 

the List 1 & 2 re-combined than List 2 items (F(1, 137)=306.999, MSE=.048, p<.001 and 

F(1, 137)=16.458, MSE=.022, p<.001, respectively).  No other interactions were 

significant, nor was there a main effect of experimental group (all F's<1 and p's<.334).   

Discussion of Experiments 1 & 2 

 The important difference between the same condition (Experiments 1) and the 

different condition (Experiment 2) is the type of pair presented in List 1.  In the same 

condition, both Lists 1 and 2 contained the same type of pairs (i.e., WF pairs).  In the 

different condition List 1 contained WW and FF pairs while List 2 contained WF pairs.  
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This manipulation led to a different pattern of results.  For both targets and foils, we see 

that having presented the items on a previous list in the same type of pairs (i.e., the List 1 

& 2 re-combined condition) induces participants to call the test items "old" more often 

compared to the case where items were presented only on List 2.  When items are 

repeated in a different type of pair, it is as if List 1 never occurred, as we see little change 

in performance.  This is consistent with our previous findings showing a list length effect 

within, but not between pair-type and with models where different pair-types are coded 

with dissimilar and non-overlapping representations. 

 These findings are also consistent with the Dyne et al (1993) study showing an 

increase in bias but no change in discrimination when items are repeated in multiple pairs 

during study.  Dyne et al emphasized the importance of eliminating backward rehearsals 

of repeated items.  Given that we found no difference in performance when re-combined 

pairs were constructed in different manners, we are fairly confident that the incidental 

task was successful in discouraging displaced rehearsals.  We now turn to experiments 

that test single item recognition under study conditions identical to those used here. 

Experiments 3 & 4 

In the representations proposed in Part I, emergent pair features differ for the 

various types of pairs and are separate from the representation for single items but the 

representations for single items are similar regardless of the type of pair in which they 

were studied.  This is based in part on a study showing that while performance in AR is 

determined by the number of studied items of the type being tested, performance in SR is 

not affected by manipulations of the relative number of different pair-types.  That is, SR 

is determined by the total length of the list and not the number of pairs of the relevant 
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type.  In our discussions in Part I, we did not specify the relationship between the features 

identifying the pairs and those identifying the singles from which they were constructed.  

One could imagine a model where the pair-type biases the encoding of the single item to 

include those features relevant to the studied pair.  For example, previous studies have 

shown that the encoding of the word jam is different when studied in the pair strawberry 

jam than when studied in the pair traffic jam indicating an item encoding that is specific 

to the pair in which it was studied (Light & Carter-Sobell, 1970; Tulving & Thompson, 

1973).  The co-occurrence models necessarily predict the same qualitative pattern of 

results for AR and SR because the pair features and single item features are identical.  

Models assuming an emergent set of features for associations allows for different 

qualitative patterns because the tasks are based on different sets of features (associative 

or single item) containing different information.  The results of the following studies will 

allow us to better understand which of these assumptions is most appropriate as we 

continue to develop the REM model.  The study conditions of these experiments are 

identical to Experiments 1 & 2 but participants are given an unexpected single item 

recognition test following study.  In Experiment 3, single items are repeated in the same 

type of pair across lists and in Experiment 4, single items are repeated in a different type 

of pair. 

Experiment 3 

Methods 

Participants 

 Twenty-five people from the Indiana University community participated in the 

experiment in exchange for partial course credit or $7.00 per hour.   
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Materials 

  The materials were identical to Experiment 1.   

Procedure 

  The procedure was identical to Experiment 1 with the exception that participants 

are instructed to say "old" to items studied on List 2 and reject all others.   

Design 

Just as in Experiment 1, List 1 contained 52 WF pairs and List 2 contained 60 WF 

pairs.  An equal number of pairs in List 2 contained items that were studied only on List 

2, studied on both lists but as members of different pairs (Lists 1 & 2 re-combined), and 

that were studied in identical pairs on both lists (Lists 1 & 2 exact).  Because we found no 

difference between the two methods for re-combining study pairs described in the earlier 

experiments, we only used one method for Experiments 3 & 4.  In particular, we chose 

the method of randomly selecting a re-combination.  The test list consisted of 120 trials, 

half words and half faces.  The foils consisted of 6 faces from List 1, 6 words from List 1 

and 48 items (half faces and half words) that were not previously studied.  The targets 

consisted of an equal number of words and faces from each of the three conditions 

described above.   

Results 

 A 2 x 3 (item type and study condition) repeated-measures ANOVA was 

conducted on the hit rates.  Hit rates to faces were higher than HRs to words, F(1, 

24)=5.932, MSE=.042, p=.023.  There was a main effect of study condition, F(2, 

48)=15.880, MSE=.026, p<.001) and no interaction between the two F(2, 48)=0.092, 

MSE=.020, p=.912.  Post-hoc analysis confirm what is shown in Figure 3, Panel A; 
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namely hit rates for items presented in Lists 1 & 2 (M=.606, SEM=.037 for the exact 

condition and M=.642, SEM=.037 for the re-combined condition) are both greater than 

the hit rate for items presented only on List 2 (M=.470, SEM=.035) but do not differ from 

one another.   

A 2 x 2 (item type and foil type) repeated-measures ANOVA conducted on the 

FARs showed higher FARs to faces compared to words, F(1, 24)=7.236, MSE=.027, 

p=.013.  False alarms to those items presented on List 1 (M=.280, SEM=.029) were much 

higher than false alarms to new items (M=.111, SEM=.016),   F(1, 24)=26.504, 

MSE=.027, p<.001 and there was no interaction between item type and foil type F(1, 

24)=0.082, MSE=.026, p=.777.  Figure 3, Panel A shows the hits and false alarms 

collapsed over item type.  For a breakdown by item type, see Table 4.   

Experiment 4 

Methods 

Participants 

 Twenty-five people from the Indiana University community participated in the 

experiment in exchange for partial course credit or $7.00 per hour.   

Materials 

  The materials were identical to Experiment 2.   

Procedure 

  The procedure was identical to Experiment 2 with the exception that participants 

are instructed to say "old" to items studied on List 2 and reject all others.   

Design 
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Just as in Experiment 2, List 1 contained 26 WW and 26 FF pairs and List 2 

contained 60 WF pairs.  Half of the List 2 pairs contained items that were studied only on 

List 2 and the other half contained items that were studied on both lists but in different 

pairs (Lists 1 & 2 re-combined).  The test list consisted of 120 trials, half words and half 

faces.  The foils consisted of 6 faces from List 1, 6 words from List 1 and 48 items (half 

faces and half words) that were not previously studied.  The targets consisted of an equal 

number of words and faces from each of the two conditions presented in List 2. 

Results 

 A 2 x 2 (item type and study condition) ANOVA was conducted on the hit rates.  

Hit rates to items presented on both Lists 1 & 2 (M=.667, SEM=.035) was much higher 

than the hit rate to items presented only in List 2 (M=.535, SEM=.031), F(1, 24)=22.246, 

MSE=.020, p<.001.  There was no main effect of item type or interaction between the 

two variables (F(1, 24)=1.090, MSE=.030, p=.307 and F(1, 24)=0.189, MSE=.012, 

p=.668, respectively).   

A 2 x 2 (item type and foil type) ANOVA was conducted on the FARs.  FARs to 

items presented in List 1 (M=.353, SEM=.044) were greater than the FARs to new items 

(M=.120, SEM=.022), F(1, 24)=42.86, MSE=.032, p<.001.  There was no difference 

between FARs to words and faces though the effect approached statistical significance 

(F(1, 24)=3.349, MSE=.019, p=.080) and there was no interaction between the two 

variables F(1, 24)=0.729, MSE=.019, p=.402.  Figure 3, Panel B shows the hits and false 

alarms collapsed over item type.  For a breakdown by item type, see Table 5.   

Comparison of Experiments 3 & 4 
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 Observation of Figure 3 along with the individual statistical analyses from 

Experiments 3 & 4 both indicate that we find the same pattern of results for SR regardless 

of whether the single items are repeated in the same or different type of pair.  In 

particular, we find that items studied on List 1 are more likely to be called "old" than 

targets studied only on List 2 or foils that have never been studied.  Here we directly 

compare the corresponding conditions of the two experiments.  A 2 x 2 x 2 mixed designs 

ANOVA was computed for HRs and for FARs.  In both cases, experimental group was 

the between-subjects factor and condition (List 2 and List 1 & 2 re-combined) and item 

type (faces and words) were the within-subject factors.  HRs do not differ for words and 

faces (F(1, 48)=.825, MSE=.029, p=.368) but those items studied on both lists have a 

higher hit rate than List 2 targets (F(1, 48)=43.477, MSE=.027, p<.001).  We find an 

interaction between item type and experiment due to the higher HR for faces than words 

in Experiment 3 but not Experiment 4.  Given that the total number of studied faces and 

words is equal for the two groups, there is no obvious reason for this pattern of data and it 

is simply attributed to idiosyncratic difference between groups of participants.  There was 

no main effect of experimental group and no other interactions approached significance 

(all F's<1.097 and all p's<.300).  Words have lower FARs than faces (F(1, 48)=10.494, 

MSE=.023, p=.002) and items that were never studied have lower FARs than items 

presented on List 1 (F(1, 48)=68.940, MSE=.029, p<.001).  There was no main effect of 

experimental group and no interactions of group with any of the other variables (all F's< 

1.752 and all p's<.192).  Thus, as expected given the individual analyses, we find the 

same pattern of data for single item recognition regardless of whether item repetitions 

occurs in the same or different type of pair.   
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Discussion of Experiments 3 & 4 

 In summary, we find the same pattern of data for single item testing regardless of 

whether items were repeated in the same or different type of pair.  This result contrasts 

with the pattern found for associative recognition, where only repetitions of the same type 

shape performance.  This pattern suggests that single items are stored in a similar fashion 

regardless of the type of pair in which they were encoded.  We now describe the model 

that successfully fit the patterns of data found in Experiments 1-4.   

A REM Model for Three-Phase Associative and Single Item Recognition 

The REM model was first proposed for single item recognition by Shiffrin & 

Steyvers (1997).  In Part I, we propose modifications that would allow the model to 

accommodate the different classes of pairs used here.  The general idea is that encoding 

of WF, FF, and WW pairs leads to dissimilar associative information, despite the fact that 

they share single items of the same type.  We make no specific claims about the encoding 

mechanism that results in these dissimilar representations, only that some combination of 

the incidental task, instructions, and stimulus materials causes storage of functionally 

separate representations.  We discussed a number of ways to implement dissimilarity 

between pair-types in a vector model like REM.  One approach utilizes a subset of vector 

positions in common for all pairs that  identify the pair-type (the type-code assumption); 

another posits non-overlapping vector positions assigned to different pair-types.  

Choosing between these two possibilities is not necessarily interesting.  The general point 

is simply that some combination of stimulus type and encoding strategies result in 

extremely dissimilar representations for the three pair-types use in this research.  We 

adopt the type-code assumption in the REM instantiation that follows. 
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First consider the information stored during study of a pair.  We assume that for 

each study trial, a memory trace is stored containing the following sets of features: single 

item features identifying each item, associative features relating the two items in some 

unique way, the current context, and a type-code identifying what type of stimulus was 

just encoded.3  The information stored about single items and their resulting association 

are independent of one another, an assumption borrowed from Murdock (1982) and 

supported by various studies (Dosher & Rosedale, 1997; Hockley & Cristi, 1996b; Clark 

& Gronlund, 1996; Kahana, 2002; Part I).  Under this assumption, the associative 

features resulting from AB are no more similar to AD than to EF, despite the shared 

single item, likewise the single item features for A are only similar to the associative 

features of AB by chance.  If a study pair contains repeated items, the same set of 

features are used to store both single item repetitions (though they may differ due to the 

inherent error in storage as described later).  Thus the representations from which features 

are selected to store single items are identical regardless of pair-type.  However, the 

associative features for the two study pairs (assuming they are different as in the re-

combined condition) are similar only by chance.  For simplicity, the context features are 

assumed to be constant throughout a single study list and change with some probability 

between successive lists.  The features identifying the type of stimulus are assumed to be 

identical within type but similar only by chance between types.  Thus it is possible, 

though unlikely, for between-class traces to contribute to the memory decision.   

REM assumes that feature values have differing environmental base rates, with 

each feature independently generated according to a geometric distribution with 

parameter g as follows  
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P(V = j) = (1 - g)j-1 g    ,      (1) 

where V refers to the feature being generated and j refers to some specific feature value, 

j=1, 2, 3, and so forth.  We assume 15 features represent each part of the vector as 

described above, and each value is drawn from a geometric distribution with parameter 

g=.40.  At study only some of the features from these representations are stored in the 

vector, with un-stored features coded as zeros indicating a lack of information about 

those features.  In particular, a feature is stored with some probability, u, otherwise a zero 

is stored.  Given that a feature is stored, the correct value is copied with some probability, 

c=.90, otherwise a random value is drawn from the geometric distribution and stored.  In 

our simulations, the number of features and the values of c and g are fixed as specified 

above.  The value u was adjusted to produce a good fit to the overall level of 

performance.  It seemed natural to assume that associative features require more effort 

than single item features to generate and store.  We therefore fit one value of uassoc=.20 

for associative features and another value of u=.32 for all other features.  Because both 

study lists are relatively similar both in time and in the encoding task being performed, 

we assume the context features are correlated across the two lists.  In particular, List 1 

context features are selected randomly from the specified geometric distribution.  Then 

List 2 context features are generated by copying each of the List 1 features with some 

probability, pctx =.70, and randomly selecting new values from the geometric distribution 

otherwise.  All of these parameters and parameter values are identical for single item and 

associative recognition for Experiments 1-4.   

Next we turn to the retrieval assumptions.  We start by noting that for the current 

simulations, we used the simplifying assumption that a type-code exists and that a probe 
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with a given type-code selects from memory all traces with that type-code, and no others 

rather than implement that assumption.  Consider single item recognition.  SR proceeds 

just as described in Criss & Shiffrin (2004a), which differs slightly from the original 

REM retrieval rules.  For a given test item, the system probes memory with item features 

and the List 2 context features (because the task requires an "old" response only to List 2 

items).  These are compared to all memory traces and a matching value is calculated as a 

likelihood ratio for the match between the probe and each trace.  For the item features, a 

likelihood value, λiI   is calculated for a memory trace i in the following way:  
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where niq is the number of non-zero mismatching single item features and njim is the 

number of matching single item features with the value j.  Features stored as zeros are 

ignored as they represent a lack of information.  The term before the product represents 

discounting due to mismatching features between the probe and memory trace.  The term 

after the product represents the positive evidence gained from the matching features.  

Because this likelihood is based on item features alone, it is termed iIλ .  In parallel, 

memory is probed with the relevant context features.  Another likelihood value, iCλ , is 

calculated based on comparing the context features to the contents of memory using 

Equation 2.  For this comparison, niq is the number of non-zero mismatching context 

features and njim is the number of matching context features with the value j.  The  term 

iIλ  gives the degree to which the memory trace matches the probe in item information 
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and the term iCλ  gives the degree to which it matches in context information.  A single 

item recognition test requires that the probe match both item and context information, so 

the two likelihood values must be combined appropriately.  We combine the two using a 

weighting parameter, α , that allows the system to differentially weight item or context 

information as follows  

1
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⎡ −−+−= iCiI λααλ  ,                               (3) 

where N is the number of memory traces contributing to the decision and Φ is the odds 

that the test item was studied in the relevant context.  If the odds is greater than some 

criterion, the item is called "old" otherwise it is called "new."  If the value of α equals 1 

all decision noise comes from the item features and the context features are ignored and 

vice versa.  As it turns out, a value of α =.50 was used for the current simulations, 

indicating an equal weighting of item and context information.  For single item 

recognition testing, it was necessary to use a non-optimal criterion of 1.5 indicating that 

Ss were conservative and only claimed an item was studied if it was very familiar.  This 

makes some sense considering the high similarity between the two study contexts causes 

familiarity of all studied items to increase without differentiating much between those 

items that were on List 2 (and should be called "old") and those items that were on List 1 

(and should be called "new"). 

Associative recognition differs from item recognition in the type of memory 

probes employed.  Figure 4 illustrates the decision process described here.  First, as 

stipulated earlier, the type-code is used to probe memory, isolating comparisons to those 

memory traces that contain a pair of the same type as the probe; this is not a part of the 
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calculations, but simply assumed.  Thus WF probes exclusively activate WF traces from 

the study list(s).  Next, associative features are compared those associative features stored 

in traces contained in the activated set.  The comparison  are done as for the single item 

features and context features via Equation 2, where niq is the number of non-zero 

mismatching associative features and njim is the number of matching associative features 

with the value j.  The resulting likelihood ratios, iAλ , give the degree to which each 

memory trace matches the test probe in associative features.   

Others have made the assumption that an associative memory probe does not 

contain context features.  This conclusion was based on various studies showing no 

forgetting for pair relative to singles over a moderate range of study-test lags (Hockley, 

1992; Hockley & Consoli, 1999).  We adopt the same assumption, so context is ignored 

and the associative activations calculated are combined by the following equation into an 

odds, фassociative: 

∑=
i

eassociativ N
1Φ iAλ    ,                                              (4) 

Even for associative tests, we assume that the familiarity of single items is 

automatically generated using Equations 2 and 3, resulting in an odds value, фitem, for 

each individual item.  In a typical AR experiment, this single item information is not 

diagnostic since all single items were presented on the study list.  Thus in these typical 

studies, using this automatically generated single item familiarity to augment the 

associative decision is not helpful and only can hurt performance.  Hence our model for 

such AR studies ignores single item information.  However, there are AR studies in 

which consideration of single item familiarity is adaptive.  In Part I, we pointed out that 
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under certain conditions, Ss may adopt a strategy of using single item familiarity to help 

reject AR foils.  Specifically, we suggested that such a strategy may be used when 

context information and/or single item familiarity is useful for the task, such as in Kelley 

& Wixted (2001).  In their paradigm, Ss were tested with intact and rearranged test pairs 

as well as foils constructed from two unstudied items.  They found that the FAR to 

unstudied foils fell below the FAR to rearranged foils (among other manipulations and 

findings).  We suggested that their participants could have used single item familiarity to 

augment their AR decisions as follows: If both singles were judged to be new then the 

pair would be called "new", otherwise the judgment would be based on associative 

features alone.  We adopt the same retrieval strategy here.   

Assume therefore that participants in an AR test probe with the type-code and has 

available for decisions фassociative for the test pair, and фitem for each individual item in the 

test pair.  Note that the familiarity of the single items is based on the match between the 

probe and those traces in the set activated by the type-code, and hence will not include 

single item traces that were stored as part of pair-types differing from that tested.  If both 

single items are judged to be new (using for each a default criterion of 1 for the odds), the 

pair is called "new."  If either one of the items (or both) is judged to be old, the decision 

is completely determined by the familiarity of the associative features.  We found the best 

fitting criterion for the associative decision to be 0.9, indicating that Ss were somewhat 

generous in calling pairs "old," perhaps sensible given that any pair containing items 

from List 1 were presumably rejected based on the single item probes.   

No parameters (excluding the various criteria just described) were allowed to vary 

between the same and different groups or between the groups given associative or single 
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item testing.  Fits were not completely optimized, but the fitting process was stopped 

when a reasonable fit was found (the predictions shown are based on 500 simulations).  

The fits, shown as white circles in Figures 1, 2, and 3 are quite remarkable particularly in 

light of the limited parameter search and the fact that all four groups were fit with the 

same parameter values.  Observation of the graphs indicates no major deviations between 

the predicted and observed values.  Most impressive is that the model used here is exactly 

the model suggested in Part I before the present data were collected.  This model was 

suggested as a plausible way to accommodate both our Part 1 data and Kelley & Wixted's 

(2001) data.  This model is applied here to a quite different paradigm with no additional 

assumptions and yet fits with high accuracy. 

 Good fit notwithstanding, we admit that variants of the specifics of this model are 

possible.  We believe, however, that all would have to incorporate some form of 

dissimilar representation for different pair-types.  For example, recall the persistence-in-

encoding hypothesis prevalent in the paired associate literature, according to which a 

repeated item tends to be encoded in a way that is consistent with its last encounter.  In 

the present paradigm, one might assume that persistence-in-encoding only occurs when 

the pair-type is repeated.  One might instantiate this idea without pair-type-codes, but 

instead with different pair-types represented by dissimilar and/or non-overlapping types 

of features.  Until further studies provide additional constraints, choosing between such 

variants is probably a matter of taste.   

We should also consider further the assumption that context plays no role in AR.  

One could justifiably argue that this assumption is a bit extreme.  It seems likely that 

context features are part of the AR probe, as with any probe, but they may not play as 
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important a role as in single item recognition for various reasons including limited 

capacity.  This line of thinking does not imply, however, that one can simply include 

context features in the associative probe and eliminate the use of single item familiarity in 

the current model.  Without single item familiarity, the model predicts approximately 

equivalent FARs whenever a rearranged pair is tested.  Recall that representations for a 

pair and its constituent single items are assumed to be independently generated; thus the 

familiarity of the single items does not affect the familiarity of the associative features.  

For this reason, the model predicts an approximately equal FAR for rearranged pairs 

regardless of the number of times or lists on which the individual single items were 

studied.  For the same reason, the model predicts approximately equivalent P(old) for all 

pairs that were presented only on List 2 (i.e., the List 2 and Lists 1 & 2 re-combined 

conditions) regardless of whether the single items comprising the pair were studied once 

or twice.  These predictions do not agree with our data.  The main benefit of  adding 

context features to the associative probe is that it will serve to reduce the List 1 intact 

FAR that would otherwise act as a target, as the association had been stored during the 

experiment.  Though it may seem logical and intuitive to include context features in the 

associative probe, it would not allow the model to better predict the observed pattern of 

data.    

 The assumption that context is not used with an associative probe is testable in 

future studies: Suppose List 1 contains pair AD and List 2 contains pairs AB and CD.  

The test pair AD (given the same instructions used here, to say "old" only to List 2 pairs) 

should have a FAR approximately equal to the HR of an intact pair studied on List 2.  

According to the model, if both singles are judged "new" then the pair is rejected, 
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otherwise the decision is based on the associative features.  In this case, both single items 

A and D were studied on List 2, so the decision will likely be based on the associative 

features.  The pair AD was studied on List 1 and without using context features in the 

probe,   the associative features alone will likely result in an "old" decision.   

The double checking mechanism introduced here is similar, on the surface, to a 

model introduced by Dosher (1984; Dosher & Rosedale, 1991).  Participants studied 

semantically related and unrelated pairs for an AR test.  Semantically related pairs were 

easier to learn but required longer decision times.  Some participants showed pronounced 

FARs to related pairs when the decision process was brief, but the high FARs 

disappeared with longer decision times.  The authors suggested that that the participants 

invoked a secondary process late in decision making that is used to reject semantically 

related foils and double check before accepting semantically related targets.  This 

example serves to illustrate another situation in which participants are induced to adopt a 

strategy of using additional probes before making an AR decision.    

As mentioned earlier, several studies measuring ROCs and decision time suggest 

that AR may be carried out via a search process (e.g., Rotello, Macmillan, & VanTassel, 

2000; Nobel & Shiffrin, 2001).  Why then do we adopt a familiarity-based model?  In 

part, we do so because the present results do not allow us to distinguish a familiarity 

based decision from one based on an elaborative search process.  A search model would 

greatly increase model complexity, requiring many additional parameters and processes, 

but would not provide additional insight into the current set of data.  Thus we saw little 

point in pursuing such a complex approach.  We note also that studies used to argue for a 

search model tend to assume (explicitly or implicitly) that a pair is stored with the same 
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set of features as the single items.  This assumption may be partially responsible for the 

conclusions drawn about the retrieval processes.  For example, the Nobel & Shiffrin 

(2001) and Gronlund & Ratcliff (1989) studies show longer decision times for AR than 

SR.  This could be explained by a recall strategy as suggested by Diller, Nobel, & 

Shiffrin (2001) or as suggested by Gronlund & Ratcliff by time to generate the 

associative features used in the probe.  The recall/familiarity distinction cannot be 

resolved by our present studies, so we adopted a familiarity based model for simplicity.  

Most critically, either type of model would require different representational similarity 

for different pair-types, the main point of this article.   

No extant models are able to account for the results of this study and Part I 

without additional assumptions.  The co-occurrence models cannot account for the 

current set of data because we find qualitatively different patterns of interference for AR 

and SR.  The emergent feature assumption of composite models has been supported here 

and adopted in our own model.  However, composite models in the form that they exist 

presently cannot handle our data.  These models combine all memory traces into a single 

vector, causing all memory traces to contribute to the decision for each other.  Because 

we find memory effects in AR only when the item repetitions occur in the same type of 

pair, composite models would also require an assumption that similarity differs between 

different pair-types.   

Experiment 5 

 All studies prior to Experiments 1-4 constructed foils by combining items from 

the same class of items.  For example a WF foil would contain a face from one WF pair 

and a word from another WF pair.  Regardless of the source of the component parts, this 
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foil probe would be compared to pairs of the same type (i.e., WF traces).  But what would 

determine the similarity to such traces?  Consider the model implemented above.  In this 

model, the type-code would limit comparisons to pairs of the same type (i.e., WF pairs).  

Because rearranged pairs are only randomly similar to the traces from which they were 

generated, the model would predict an equal false alarm rate for foils constructed within 

class and foils constructed between class (e.g., a WF foil constructed from a face from a 

FF pair and a word from a WW pair).  Even if single items entered the decision, though 

presumably they would not, the model would make the same predictions.  If, however, if 

the single item encoding is biased by the pair-type (as suggested by the alternate model 

described in the previous section) and single item familiarity is automatically brought to 

the decision, then FARs to cross-class foils should be lower than foils constructed in the 

typical manner.  Though this experiment was not designed as a strict test of the two 

model conceptions, the results could provide useful information.  If we find a difference 

in FARs between cross-class and within-class foils then we can be somewhat confident 

that single item information is contributing to the decision (even though it is not 

diagnostic) and that the encoding of single item information is dependent on the type of 

pair in which it was studied.   

Methods 

Participants 

 Forty-three Indiana University undergraduates participated in the experiment in 

exchange for either partial course credit or $7.00 per hour.   

Materials 

 Faces and words were randomly selected from the same set as Experiment 1.   
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Procedure 

 Participants studied 144 pairs, equally divided between WF, FF, and WW pairs.  

Each pair was studied for a total of 3 sec with a 500 msec ISI during which the 

participant was required to answer the question, "Do these two items go together?"  

Following study, participants engaged in a distracter math task for 45 sec.  The test 

consisted of 32 WF pairs, half intact and half rearranged.  Of the rearranged test pairs, 

half were constructed from items studied in WF pairs and half were constructed by taking 

one word from a WW pair and one face from a FF pair.  As always, pairs were studied 

side-by-side and tested one above the other such that the test arrangement was not 

predictive of the study arrangement.  In summary there is one independent variable 

manipulated within-subject, namely the type of rearranged pair.  Because there is a single 

hit rate, false alarm rates are the only dependent variable of interest.   

Results & Discussion 

 The hit rate was .569 (SEM=.027).  The false alarm rate was slightly greater for 

within-class foils (M=.230, SEM=.024) than cross-class foils (M=.206, SEM=.028).  

However, this small numerical difference failed to reach statistical significance, F(1, 

42)=1.02, MSE=.011, p=.319.  We can be fairly sure that single item information, biased 

toward the type of pair in which it appears, is not contributing to the AR decision.  This is 

not particularly surprising given the results of Part I and had been the working 

assumption until Experiments 1-4 required otherwise.  This study does not allow any 

further conclusions regarding the proposed models.   

Summary 
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In a paradigm where items were studied on multiple lists, we have shown that 

changes in memory performance on a subsequent associative recognition task depend on 

the type of pair in which the repeated items were studied.  We found changes (an overall 

increase in P(old) in this case) when items were repeated across lists in the same type of 

pair, but not different types of pairs.  In contrast, performance on a single item 

recognition task is not subject to such pair-type dependencies.  This data was well fit by a 

model assuming that participants adopt a strategy of using single item familiarity to help 

make the AR decision.  In particular, if the stored features for both single items indicate 

that neither were studied on the relevant study list, the pair is called new regardless of the 

familiarity of the associative features.  If it is determined that either (or both) of the single 

items were in fact studied on the recent list, then the AR decision is based strictly on the 

familiarity of the associative features.   
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Footnotes 

1  Though note that some studies (e.g., Kelley & Wixted, 2001) report curvilinear ROCs 

for AR and SR.   

2  Note that the most recent version of TODAM (Murdock, 1997) assumes context is not 

used for AR decision and the memory vector is not reset at the beginning of the 

experiment.  In combination, these assumptions produce no forgetting for pairs.  Earlier 

versions of TODAM (Murdock, 1982) did produce forgetting due to interference from 

other study trials.  Thus, TODAM can either predict no interference for pairs using the 

most recent set of assumptions or it can predict interference, but it cannot simultaneously 

predict both patterns as we find.   

3  When computing d', any value of 0 was replaced with 1/2N and any value of 1 was 

replaced with 1-1/2N where N is the number of observations in that condition.   

4  This actually transforms the vector used in REM into a matrix, but this is purely 

cosmetic change.  
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Table 1.  An Example of each Study and Test Condition for Experiment 1.   

 
Study List 1 Study List 2 Test Pair Condition Label 

    8 cow 

  9 gloomy 

8 cow (target) 

9 cow (foil) 

List 2 

 

3 tea             

4 bear 

7 smart 

  3 bear  

  7 tea 

   

3 bear (target) 

7 bear (foil) 

 

Lists 1 & 2 Re-combined 

 

 

11 house 

12 brain 

 

11 house 

12 brain 

 

11 house (target) 

12 house (foil) 

 

Lists 1 & 2 Exact 

 

5 room 

6 believe 

  

5 believe (foil) 

 

List 1 Rearranged 

 

17 ape 

  

17 ape (foil) 

 

List 1 Intact 

 

Note: Numbers refer to faces in the actual experiment.  In the actual experiment no item 

would be repeated during test (as illustrated here simply to conserve space).   
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Table 2.  Discrimination for Associative Recognition in Experiments 1 & 2.   

 
 Experiment 1 (Same) Experiment 2 (Different) 

 d-prime 

List 2 0.998 (.096) 0.924 (.091) 

Lists 1 & 2 Recombined 0.937 (.095) 1.028 (.099) 

Lists 1 & 2 Exact 1.258 (.103)  

 
Note: Standard errors of the mean are listed in parentheses.   
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Table 3.  An example of each Study and Test Condition for Experiment 2.   

 
Study List 1 Study List 2 Test Pair Condition Label 

      7 tree  

   8 truth 

7 tree (target) 

8 tree (foil) 

List 2 

1 2 

3 4  

car house 

  4 car 

  1 house 

   

4 car (target) 

1 car (foil) 

 

Lists 1 & 2 Re-combined 

 

 

5 6  

hat table 

  

5 table (foil) 

 

 

List 1 Rearranged 

 
Note: Numbers refer to faces in the actual experiment.  In the actual experiment no item 

would be repeated during test (as illustrated here simply to conserve space). 
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Table 4.  Hit and False Alarm Rates as a Function of Item Type for Single Item 

Recognition in Experiment 3.   

 
 Faces Words 

Condition Hit Rate 

List 2 .504 (.043) .436 (.041) 

Lists 1 & 2 Re-combined .688 (.042) .596 (.044) 

Lists 1 & 2 Exact .648 (.040) .564 (.049) 

 False Alarm Rate 

List 1 .320 (.047) .240 (.036) 

New .160 (.025) .062 (.014) 

 
Note: Standard errors around the mean are listed in parentheses. 
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Table 5.  Hit and False alarm Rates as a Function of Item Type for Single Item 

Recognition in Experiment 4.   

 
 Faces Words 

Condition Hit Rate 

List 2 .512 (.039) .557 (.037) 

Lists 1 & 2 Re-combined .653 (.040) .680 (.037) 

 False Alarm Rate 

List 1 .367 (.050) .340 (.050) 

New .157 (.029) .083 (.020) 

 
Note: Standard errors around the mean are listed in parentheses. 

 



 

 85

Figure Captions 

Figure 1.  The probability of calling a test item old (P(old)) as a function of  the type of 

test pair in Experiment 1.  Error bars represent one standard error above and one below 

the mean.  Open circles represent the fit of the modified REM model described in the 

text.   

Figure 2.  The probability of calling a test item old (P(old)) as a function of  the type of 

test pair in Experiment 2.  Error bars represent one standard error above and one below 

the mean.  Open circles represent the fit of the modified REM model described in the 

text.   

Figure 3.  The probability of calling a test item old (P(old)) as a function of  the type of 

test item.  Panel A shows the data from Experiment 3 (repetitions in the same pair-type) 

and Panel B shows the data from Experiment 4 (repetitions in a different pair-type).  

Error bars represent one standard error above and one below the mean.  Open circles 

represent the fit of the modified REM model described in the text.   

Figure 4.  A schematic of the retrieval processes involved in the model used to generate 

the fits pictured in Figures 1, 2, and 3.  See the text for a detailed description of the 

model.   
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[ WFcode       ]

[ W1F1 ] [   W1 Wcode     C   ]

[   F1 Fcode      C   ]

Get Activated Set

If фassociative < criterion

“new”

If фassociative > criterion

Consider Single Items

If both  фitem < criterion

else

“new”

“old”
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Part III 

 

 

The Role of Encoding Strategies in the Relationship Between  

Single Items and Associations 
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Parts I and II of this manuscript have demonstrated the independence of various 

types of pairs using experimental manipulations of list-length and list discrimination.  

That performance is determined by within-class but not between-class similarity is of 

great empirical and theoretical interest in part because this set of data cannot be 

accounted for by any existing model.  Extant models assume similarity (in that they share 

comparable features) between all types of studied items whereas we find no similarity 

between word-face (WF), face-face (FF), and word-word (WW) pairs.  A new model was 

designed to account for various empirical results discussed in Part I and that same model 

was able to beautifully predict the data from Part II.  The model assumes separate 

features for single items and pairs that are similar to one another only by chance.  For 

example, the features for the association generated during the study of pair AB and for 

the single item A are similar only by chance.  Study of WF, FF, and WW pairs also 

results in separable representations.  In Part II, they are separable by a set of features 

identifying the type of stimulus, much like context features identify the list on which an 

item was studied (though other options for separable pair features are discussed in Part I).  

When a single item is presented for a memory test, only single items contribute to the 

decision.  Likewise, when tested with a pair in associative recognition (AR), only pairs of 

same type contribute to the decision.  However, under more complicated AR paradigms 

where single item familiarity or context information is thought to be useful, Ss may adopt 

a strategy of using single item familiarity to guide their decision.   Given the novelty and 

importance of these findings, there are many options for future research.  First, we 

discuss a couple of possibilities followed by a set of studies that begin to address one 

possible future direction: the role encoding strategies play in the formation of 
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independent representations of singles and pairs  (Experiments 1 and 2) and of WF, FF, 

and WW pairs (Experiment 3).   

One possible direction is to examine the role of verbal versus visual information.  

Upon hearing about this research, many suggest that the dissimilarity between WW and 

FF pairs is due to a difference in verbal and visual codes.  FF pairs presumably result in 

the storage of pure visual information and WW pairs presumably result in the storage of 

pure verbal information.  Because visual and verbal information are different in kind, 

they do not interfere with one another (e.g., Paivio, 1971).  Following this logic, the 

dissimilarity of those pairs to WF pairs is due to the fact that Ss know WF pairs are a mix 

of verbal and visual information while WW and FF consist of only one type of 

information.  We could use pictures of houses, for example, along with FF and WW pairs 

to further examine this kind of proposal.  Houses are visual information, so they should 

perhaps interfere with FF but not WW pairs.  Another approach is to require use of a 

verbal or visual mediator to connect the two study items.  This could, perhaps, alter the 

type of code so that it is not strictly dependent on the stimulus.  For example, study of a 

WW pair and a visual mediator would presumably lead to a trace containing both visual 

and verbal codes.  Some combination of these two techniques could help us better 

understand the role (if any) of different codes for verbal and visual information in the 

finding of independence between WW, FF, and WF pairs. 

Another area ripe for future research is the role of encoding strategies in the 

current findings.  To what extent are these findings determined by either the stimulus set 

itself or the encoding processes acting upon the stimuli?  Several studies have 

demonstrated the importance of encoding technique on single item recognition (SR) and 
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associative recognition.  For example, instructions to form an interactive image at study 

harms (Begg, 1978; McGee, 1980) or has no affect (Begg, 1978; Hockley & Cristi, 

1996a) on SR relative to instructions to form separate images.  However, performance in 

AR under the later set of instructions is considerably worse than under the former 

instructions.  The studies just discussed address the level of performance as a function of 

encoding, here we begin to examine the role of encoding strategies on the type of 

information stored in memory.  In Experiments 1 & 2, Ss study a single list containing 

either WF pairs alone or WF pairs and single faces.  Ss are given different instructions in 

order to examine the encoding conditions under which the information about single items 

does not contribute to an AR decision.  In Experiment 3, we attempt to better understand 

the role of encoding strategies in the dissimilarity between WF, FF, and WW pairs.  We 

essentially replicate a subset of conditions from Experiment 3 in Part I but give Ss 

different study instructions.   

For all analyses we use an alpha level of .05 with Bonferroni adjustments for 

post-hoc tests.  We are primarily interested in changes in discrimination (though we also 

report P(old)), particularly given the risk that criteria may change between Ss groups.  In 

order to be confident that the patterns of da (Macmillan & Creelman, 1991) are not due to 

elimination of participants with undefined values or other potential pitfalls of using the 

measure, we also compute and report values of d' (Green & Swets, 1966).  When 

computing d-prime, any value of 0 or 1 was replaced with 1/2N or 1-1/2N, respectively.   

Experiment 1 

Recall once again that our model assumes single items do not interfere with AR 

decisions unless warranted by the experimental design and instructions as in Part II.  That 
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is under typical situations, such as those employed here, only associative features are 

used when deciding if a pair is intact or rearranged.  In all prior experiments, single items 

were embedded in pairs.  Pair-types that were not the same class as the test item did not 

produce interference and thus we assumed that single items did not contribute to a 

memory decision for a pair.  For example, both WW and WF pairs contain words.  If 

WW pairs do not affect performance for WF pairs then neither must single words.  This 

experiment attempts to directly test this notion by including single items on the study list.  

Study lists will contain WF pairs, or single faces in addition to WF pairs, followed by 

tests of AR.  According to the model, probing with a WF should activate only WF 

features and no features of single items, thus discrimination should increase as the 

number of WF pairs decreases, but the number of single faces should have no impact.   

Methods 

Participants 

 137 Indiana University undergraduates participated in the experiment in exchange 

for either partial course credit or $7.00 per hour.   

Materials 

  Black and white photographs of faces were selected primarily from college 

yearbooks and from the Olivetti Research Database of Faces (AT & T, Cambridge, 

1994).  Each of the 210 faces was standardized so that the head orientation, level of the 

eyes, and position of the chin were identical and there was very little (if any) background.   

The set of words contained 476 hard to image words of varying environmental frequency 

(M=18.49; range 1-245, Kucera & Francis, 1967).  Any words that might describe a face, 

a person, or a characteristic of either were excluded.   
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Procedure 

 Each participant received one study-test block; the composition of the study list 

varied between-subjects.  Each participant received a study list containing either 60 WF 

pairs, 40 WF pairs, or 40 WF pairs plus 20 single faces.  Each trial lasted 3 sec with a 500 

msec inter-stimulus interval (ISI).  During study, participants were simply instructed to 

study the items for a later memory test with no specific task given during encoding.  The 

length of the distracter task separating study and test varied such that the time between 

the first study trial and the first test trial was constant between groups.  Participants in all 

groups received an AR test containing 40 trials, half intact and half rearranged.  No test 

trials included faces studied as singles.  In summary there was one independent variable 

manipulated between-subject, namely the composition of the study list.   

Results & Discussion 

 According to the model, AR performance should be determined by the number of 

pairs and not affected by the presence of singles.  Contrary to predictions, the level of 

discrimination depended on the total number of study trials rather than on the number of 

studied pairs, as shown in Figure 1.  A one-way ANOVA established a main effect of 

condition (F(2,126)=5.241, MSE=1.023, p=.007).  Post hoc analyses confirmed that the 

40 WF group (M=1.109, SEM=.084) had the highest level of discrimination and there 

was no difference between the groups that studied 60 WF (M=0.824, SEM=.057) or 40 

WF plus 20 single faces (M=0.856, SEM=.060).  The 40 WF condition had a numerically 

higher hit rate (HR) and lower false alarm rate (FAR) than the other conditions, as can be 

seen in Table 1.  However, the hit rate advantage was only marginally significant (F(2, 
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136)=2.509, MSE=.049, p=.085) and the false alarm rate advantage was not significant 

(F(2, 136)=0.822, MSE=.012, p=.442).   

 Why does this set of data not conform to the model predictions?  It is possible that 

the model is simply wrong.  However, the model was developed around a specific set of 

experiments demonstrating (albeit indirectly) that the number of single items has no 

bearing on performance in AR.  So at least in some cases it is necessary for the model to 

assume that singles do not interfere with memory for associations.  In Parts I and II, we 

always used an encoding task asking Ss to make a judgment about the pair.  Given the 

present design, those encoding instructions were not possible.  Naively, we decided to 

forgo giving specific instructions and simply tell Ss that their memory would be tested 

following the study list.  Perhaps this decision was critical to the resulting pattern of data.  

Previous studies indicate that given such vague instructions, participants tend to prepare 

for a recall test (Eagle & Letier, 1964; Elias & Perfetti, 1973).  Assuming the same 

strategy was employed here, participants likely co-rehearsed items occurring over several 

trials by forming sentences, stories, or by using other mnemonic devices rather than 

forming unique associations between items that occurred together in a single trial.  This 

of course implies that the distinction between WF, FF, WW, and single items may be 

some combination of stimulus type and encoding strategies.  Experiment 2 is essentially a 

replication of this study where Ss are given specific encoding instructions designed to 

encourage Ss to form associations between items within a trial but not across trials.   

Experiment 2 

  The basic logic behind the design of this study is identical to Experiment 1 with 

one important exception.  During study, Ss rate the ease with which they could generate a 
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sentence containing the item(s) on the screen.  Assuming Ss follow instructions, we 

expect to find the pattern of results predicted by the model.  Namely, we expect AR 

discrimination to be determined by the number of pairs and not depend on the number of 

studied singles.  The exact number of pairs and singles is different from Experiment 1 for 

reasons no longer relevant, but the logic is the same.   

Methods 

Participants 

 191 Indiana University undergraduates participated in the experiment in exchange 

for either partial course credit or $7.00 per hour.   

Materials 

 Faces and words were randomly selected from the same set as Experiment 1.   

Procedure 

 Each participant received a study list with either 64 WF pairs, 32 WF pairs, or 32 

WF pairs plus 32 single faces.  Immediately following 3 sec of study, Ss rated how easy 

it was to generate a sentence containing the current study item(s).  Participants in all 

groups received 32 test trials, half intact and half rearranged.  All other details are 

identical to Experiment 1.   

Results & Discussion 

 Instructions to form a sentence including the item(s) on a trial lead to data more 

consistent with the model predictions than instructions to simply study for a later memory 

test.  The level of discrimination depended on the number of studied pairs and was not 

affected by the additional studied single items, as shown in Figure 2.  Unfortunately, this 

effect is weak and not statistically significant as measured by a one-way ANOVA (F(2, 
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164)=.949, MSE=.427, p=.389).  Both hits and false alarms were numerically greater in 

the condition with the fewest trials (e.g., 32 pairs) suggesting these Ss  adopted a less 

strict criterion.  This effect was only significant for hit rates (F(2, 188)=.4.198, 

MSE=.138, p=.016) but not for false alarms (F(2, 188)=.298, MSE=.009, p=.742).  Hits, 

false alarms, and d-prime are reported in Table 2.   

 Though the expected pattern of data is present, the effect is weak and not 

statistically reliable.  Why do we not find stronger evidence supporting the model 

assumption that memory traces from single items are not involved in making a memory 

decision about a pair?  There are at least two possibilities.  First, it is likely that 

participants vary in the degree to which they follow instructions during study.  For 

example, the group studying WF pairs plus single faces may have begun to form 

redundant sentences for the single faces.  It seems likely that generating a different 

sentence for a series of faces is a tedious task, particularly given our set of faces tended to 

be somewhat uninspiring.  Though they do vary in race, age, and gender, the people 

pictured tend to be wearing a collared shirt and a smile, and are void of any bizarre hair 

styles, facial markings, or clothing (given that the majority are taken from yearbooks).  

Perhaps the variability in adopted study procedures also encouraged variability in test 

strategies.  This is in part supported by the observation that the size of the standard error 

of the mean for the condition where both singles and pairs were studied is greater than the 

other conditions (see Table 2).   

A second and perhaps more compelling reason that the manipulation did not 

produce a more reliable set of data is the nature of the encoding question.  Ss were asked 

to generate a sentence involving the item(s) on each trial, for either WF pairs or a single 
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face.  For WF pairs, Ss likely generated a sentence linking the word to the face in some 

meaningful way.  For single faces, Ss must also generate a set of words that are related to 

a face.  These two strategies sound strikingly similar, the only difference being whether 

one of the words from the sentence was provided by the experimenter.  Unfortunately 

these may have resulted (at least in some cases) in the storage of somewhat similar 

representations for the different types of stimuli.   

 Regardless of the exact reasons for the somewhat weak pattern of data, 

Experiments 1 and 2 are informative.  What is clear from this data is that the measurable 

dependence or independence of different types of pairs and single items is not purely a 

function of stimulus type but depends on encoding.  When encoding instructions 

emphasize a unique relationship between items presented in a single trial (e.g., in all 

previous studies using the "How well do these two items go together?" task), the different 

types of pairs and singles seem to be encoded in such a way that they do not share 

features and thus do not contribute to the decision for one another  When no encoding 

instructions are provided (e.g., Experiment 1), Ss default encoding strategy is one in 

which singles and pairs are encoded in way that allows them to interfere during a 

memory test.  In Experiment 2, we find a pattern somewhat in between, perhaps due to a 

less than optimal choice of encoding task.   

Experiment 3 

 In previous studies showing within-class but not between-class effects, 

participants were given a task during encoding.  In fact, in most research on AR, 

participants are given a task to encourage relational encoding.  The majority of such 

instructions include either a suggestion to form a sentence or an image relating the two 
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items.  As part of a pilot study prior to those studies reported in Part I, we manipulated 

the encoding task and found the best overall performance when Ss were given a task 

where they decide how well the two items go together, thus we adopted this task for the 

majority of our studies.  As already described, several studies have shown that the level 

of performance in an AR task depends on the encoding instructions.  For example, studies 

(Hockley & Cristi, 1996a; McGee, 1980; Begg, 1978) have shown that instructions 

emphasizing the relationship between two study items improves AR performance while 

instructions emphasizing the individual items harms performance.  In terms of the current 

findings, the question becomes whether the dissimilarity of the various pair-types 

depends on the encoding instructions.  Experiments 1 & 2 demonstrated that the 

similarity between singles and pairs is at least partially dependent on encoding task.  

Thus, it is reasonable that we will find a parallel results for the different pair-types.   

 The current study is similar to Experiment 3 from Part I.  Participants are given 

two relevant study-test blocks each containing two types of pairs.  The number of studied 

pairs is held constant for one pair-type and is varied for the other pair-type.  This design 

allows us to independently measure the effects of adding pairs of the same type as well as 

adding pairs of a different type to the study list.  Instead of using the encoding task used 

in Part I (e.g., "How well do these two items go together?"), we simply tell Ss to study 

the items for a later memory test.  If the ‘go together’ instructions simply encourage 

associative encoding in general but not a different type of encoding for the three pair-

types, we expect to see the same pattern here (perhaps with slightly worse performance 

overall).  Namely, we would expect within but not between class length effects.  

However, if the independence of the pair-types depends on both the stimulus class and 
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the encoding task then performance may be based on the total list length, not the number 

of pairs of the same type.   

Methods 

Participants 

 96 Indiana University undergraduates participated in the experiment in exchange 

for either partial course credit or $7.00 per hour.   

Materials 

 Faces and words were randomly selected from the same set as Experiment 1.   

Procedure 

 The design is a 2 x 2 x 2 mixed design with condition (constant or varied) and list 

(short or long list) varied within-subject and pair-type assignment varied between-

subject.  Participants are given a total of 3 study-test blocks with 45 sec separating study 

and test.  Each study pair was presented for 3 sec separated by a 500 msec  ISI.  The first 

block is practice to familiarize participants with the task and the resulting data is not 

analyzed or presented here.  For the practice list, Ss studied a total of 20 pairs (10 of each 

type).  The practice test list contained a total of 20 pairs, 5 intact and 5 rearranged pairs 

from each pair-type.  The remaining two study-test blocks contain two conditions of 

interest.  In the constant condition, 20 pairs of that type are presented on each study list.  

In the varied condition, one study list contains 20 pairs of that type and the other study 

list contains 40 pairs of that type.  In particular, Group A studied the following two lists 

in addition to the practice list: List A (the short list) contained 20 WF and 20 FF pairs and 

List B (the long list) contained 20 WF and 40 FF pairs.  For this group, WF pairs are 

assigned to the constant condition and FF are assigned to the varied condition.  Group B 
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received lists with FF as the constant pair-type and WF as the varied pair-type.  The order 

of the short and long study lists was chosen randomly for each Ss.  To control study-test 

lag, each study list was constructed such that only the first 40 pairs contributed to the test 

list and no others.  After each study list, Ss receive 40 test pairs, 10 intact and 10 

rearranged pairs from each of the pair-types and are instructed to accept intact pairs and 

reject rearranged pairs.  Note that the two lists of interest are constructed in a similar 

fashion as the corresponding conditions in Experiment 3, Part I.  One non-critical 

difference is the absolute number of study pairs (here, it is 20 vs.  40 and in the Part I 

study it was 10 vs.  20).  Of particular importance, in the present design we do not ask Ss 

to engage in the go together study task; they are simply instructed to study for a memory 

test.   

Results & Discussion 

In a previous study, we showed that for a given type of test pair, performance is 

determined by the number of studied pairs the same type (Experiment 3 of Part I).  

Adding pairs of a different type to the study list did not change discrimination.  If the 

dissimilarity of the various pair-types is due solely to stimulus differences then we should 

see the same pattern of data here.   

In fact, we did not replicate those findings.  Performance was determined by the 

total list length rather than the length of the pair-type.  We performed a 2 x 2 x 2 mixed 

design ANOVA with condition (constant or varied) and list (short or long) as within-

subjects factors and assignment of pair-type to condition as the between-group factor.  

First consider the different groups of participants (i.e., whether FF served as varied or 

constant condition).  For all dependent measures there will be an interaction between 
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group and condition because for one group WF pairs will be the constant condition and 

the other group will have WF pairs in the varied condition.  This interaction, therefore 

only tells us that performance varies between WF and FF pairs and this is not particularly 

enlightening.  There were no other interactions or main effects involving group, so the 

remaining discussion ignores this variable (Table 3 contains a full list of the dependent 

measures for both groups).   

To replicate the previous finding showing that performance depends on the 

number of within class pairs but not on the number of between class pairs, we should find 

an interaction between list and condition such that performance for the varied condition is 

greater in the short compared to long list but performance for the constant condition does 

not differ between lists.  This pattern of data is exactly what we found previously and is 

shown in Figure 3, Panel A.  In the current experiment, we find no evidence for this 

interaction by observation of the data or by statistical tests.  Instead, we find that 

performance is better for the short list for than the long list for both the constant and the 

varied conditions.   

First consider da, pictured in Figure 3, Panel B, we find better performance for 

short lists compared to long lists and better performance for the constant condition than 

the varied condition (F(1, 35)=3.107, MSE=.431, p=.087; F(1, 35)=9.003, MSE=.259, 

p=.005, respectively) but no interaction between the two, F(1, 35)=1.688, MSE=.343, 

p=.202.  There is no reason that discrimination in the constant condition should exceed 

that in the varied condition.  In fact, it appears that the opposite was true for the prior 

experiment.  Thus, we do not consider this difference meaningful or discuss it further.  

Despite the statistical analyses indicating otherwise, observation of Figure 3, Panel B 
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may suggest that we do find the expected pattern of data, however in this case the 

reported values of da are particularly noisy due to elimination of about 60% of the 

participants due to undefined values.  The pattern of data and statistical tests for HR, 

FAR (shown in Figure 4) and d-prime (shown in Table 3) confirm that in fact, 

performance was based on the total list length and not the number of within class pairs.   

The list length effect is mainly attributable to differences in the FARs.  We find 

greater false alarm rates for the long list than the short list (F(1, 94)=5.556, MSE=.022, 

p=.020), no main effect of condition (F(1, 94)=1.245, MSE=.028, p=.267) and no 

interaction (F(1, 94)=0.168, MSE=.023, p=.683).  There was no difference between HRs 

for the long or short list (F(1, 94)=0.381, MSE=.023, p=.539) or the constant versus 

varied conditions (F(1, 94)=1.385, MSE=.040, p=.242) and no interaction between the 

two variables (F(1, 94)=0.236, MSE=.025, p=.629).    

The primary difference between this study and our previous study was the set of 

encoding instructions.  Much like Experiments 1 & 2, when Ss are not given specific 

instructions they tend to encode items (different pair-types here, singles and pairs in 

Experiments 1 & 2) in a similar fashion.  We hypothesize two ways in which this is 

accomplished.  First, they tend to co-rehearse items from nearby trials which muddles the 

difference between types of stimuli.  Second, they may tend to use some generic 

encoding strategy such as rote repetition which does not allow for dissimilarity between 

types of stimuli to emerge.  We can be certain that the dissimilarity observed in previous 

studies is not purely a function of the stimulus itself and it is dependent on encoding 

strategies.  This raises the interesting possibility that one could potentially find 

independence between different WW pairs, given certain encoding constraints.  For 
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example, suppose Ss studied WW pairs with very different encoding tasks.  It may be 

possible to demonstrate independence within the class of WW pairs given such a design.   

 What are the implications from this study for future research?  Depending on the 

goals, one should carefully decide whether to use generic instructions or instructions 

designed to emphasize the relationship between the two items (e.g., how well do these 

items go together).  The exact task employed during study is not so important as 

recognition and discussion that any pattern of results may be dependent on the study task 

and not a general property of memory, as authors would often prefer to claim.   

General Discussion 

 Since at least Atkinson & Shiffrin's (1968) designation of control strategies as 

"those processes that are not permanent features of memory, but are instead transient 

phenomena under the control of the subject; their appearance depends on such factors as 

instructional set, the experimental task, and the past history of the subject" the field has 

acknowledged that encoding strategies play a major role in memory.  Much of the early 

research involved showing different levels of performance depending on the type of 

encoding (e.g., Craik & Lockhart, 1972).  For example, several studies demonstrated that 

under a variety of conditions 'deep' or semantic tasks (i.e., generate a sentence for the 

study word) resulted in better performance than 'shallow' or surface-level tasks (i.e., state 

how many times the letter E appears in the study word).  Today, manipulations such as 

these are often used to improve performance.  However, little research has addressed the 

mechanisms of why or how encoding tasks lead to different levels of performance.   

Of greater interest here is not whether various encoding methods lead to different 

levels of performance, but whether tasks lead to storage of qualitatively different types of 
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information.  For example, we have recently demonstrated that one of the most robust 

findings in the recognition memory literature, the word-frequency effect (WFE), is 

dependent on the encoding task.  The WFE is defined as a higher HR and lower FAR for 

words of low normative frequency compared to words of high normative frequency.  In 

Criss & Shiffrin (2004b), we demonstrated that the HR portion of this effect is entirely 

dependent on encoding task.  In particular, we used a relatively large number and variety 

of encoding tasks (mixed within a list or between lists) and found the typical finding for 

only two of the tasks: generic instructions to study for a later test and a task asking 

whether or not the word contains any distinctive letters.  For all other tasks, we found no 

difference in HR as a function of word frequency.  Note that this finding held true over 

the whole range of levels of performance.  We explained our findings in terms of the type 

of features stored as a function of encoding strategies.  Relevant to the current research is 

the idea that different types of information may be encoded depending on the task 

demands.   

The Criss & Shiffrin (2004b) studies are a particularly compelling example of 

what can happen when encoding issues are addressed as we showed that the WFE, 

deemed a "regularity of recognition memory," is heavily dependent on encoding.  In the 

current manuscript, we demonstrated that the type of information stored during study of a 

pair is determined by the encoding strategy.  Under some situations, single items and 

pairs are stored in a way that allows them to interfere with one another and under other 

study instructions, they are stored with independent representations.   

 Another line of research is more relevant to the present studies.  Several studies 

have shown that emphasizing information about individual items harms AR performance 
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relative to a study instructions emphasizing the relation between items (Begg, 1978; 

McGee, 1980; Hockley & Cristi, 1996a).  Such studies are generally used to support the 

assumption that associative information goes beyond just the information about the 

individual items.  The present studies fit nicely in this literature as we show different 

qualitative patterns of results depending on encoding instructions.  Our conclusions, 

however, are more specific than previous studies because we also show independence (or 

dependence depending on encoding instructions) of items and associative features as well 

as between different types of pairs.   

In these studies, we simply demonstrate that encoding instructions can result in 

varying levels of dependence between singles and pairs and between different classes of 

pairs.  Future work should address the mechanisms behind such an effect.  Ultimately, we 

would like a process model of typical encoding strategies as well as the conditions under 

which each is employed.
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Table 1.  Hit Rates, False Alarm Rates, and d-prime for the Groups in Experiment 1.   

 

 
Note: Standard errors of the mean are listed in parentheses.   

 

 40 Pairs & 20 Faces 40 Pairs 60 Pairs 

Hit Rate  .551 (.019)  .616 (.022)  .578 (.021) 

False Alarm Rate  .230 (.018)  .203 (.016)  .233 (.019) 

d-prime 0.941 (.065) 1.229 (.095) 1.008 (.076) 
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Table 2.  Hit Rates, False Alarm Rates, and d-prime for the Groups in Experiment 2.   

 

 
Note: Standard errors of the mean are listed in parentheses.   

 

 32 Pairs & 32 Faces 32 Pairs 64 Pairs 

Hit Rate  .622 (.026)  .680 (.022)  .588 (.020) 

False Alarm Rate  .238 (.025)  .260 (.023)  .239 (.019) 

d-prime 1.188 (.100) 1.264 (.114) 1.046 (.101) 
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Table 3.  Hit Rates, False Alarm Rates, da, and d-prime as a Function of Study Condition 

for each Group in Experiment 3.   

 
 HR FAR da d-prime 

  Group A  

Short List     

Varied (FF) .583 (.026) .272 (.028) 0.491 (.155) 0.914 (.114) 

 Constant (WF) .741 (.030) .211 (.028) 0.982 (.160) 1.626 (.133) 

Long List     

Varied (FF) .550 (.025) .324 (.028) 0.320 (.139) 0.645 (.119) 

Constant (WF) .748 (.027) .257 (.028) 0.977 (.156) 1.493 (.125) 

  Group B  

Short List     

Varied (WF) .702 (.025) .246 (.027) 0.997 (.143) 1.372 (.109) 

Constant (FF) .576 (.029) .256 (.026) 0.759 (.148) 0.959 (.127) 

Long List     

Varied (WF) .700 (.024) .252 (.027) 0.535 (.128) 1.330 (.114) 

Constant (FF) .566 (.026) .294 (.027) 0.633 (.144) 0.796 (.120) 

 
Note: Standard errors of the mean are listed in parentheses. 
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Figure Captions 

Figure 1.  Discrimination as a function of study condition in Experiment 1.  Error bars 

represent one standard error above and one below the mean.    

Figure 2.  Discrimination as a function of study condition in Experiment 2.  Error bars 

represent one standard error above and one below the mean.   

Figure 3.  Panel A is a subset of the conditions in Experiment 3 of Part I.  Discrimination 

is plotted as a function of list and condition.  Panel B shows the comparable data set from 

Experiment 3.  In both cases, error bars represent one standard error above and one below 

the mean.   

Figure 4.  The probability of calling a test item old (P(old)) as a function of list and 

condition for Experiment 3, collapsed over Ss group.  Error bars represent one standard 

error above and one below the mean.   
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