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The Shape of Things to Come: Evaluating Word Frequency as a
Continuous Variable in Recognition Memory

Pernille Hemmer
Rutgers University

Amy H. Criss
Syracuse University

The role of experience in memory, specifically the word frequency (WF) mirror effect showing higher
hit rates and lower false alarm rates for low-frequency words, is one of the hallmarks of memory.
However, this “regularity of memory” is limited because normative WF has been treated as discrete (low
vs. high). We evaluate the extent to which the prototypical WF mirror effect holds when WF is treated
as a continuous variable. We find a clear nonmonotonic U-shaped relationship. Hit rates are higher for
both low-frequency and high-frequency words. Linear and quadratic regression models were fit to the
data at both the item and the participant level, and the quadratic model provided a better fit at both levels.
This finding is inconsistent with the empirical and theoretical finding of a mirror effect and requires a
novel approach to accounting for the role of experience in episodic memory.
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Word frequency (WF) has received much empirical and theo-
retical attention (e.g., Glanzer & Adams, 1985, 1990; Glanzer &
Bowles, 1976; Schulman, 1967). In the laboratory WF is defined
as the frequency of occurrence that a word appears in a corpus. For
example, the word pencil has high frequency, appearing 3,021
times, and the word apricot has low frequency, appearing 286
times, among the 131 million words in the Hyperspace Analogue
to Language corpus (Balota et al., 2007; Lund & Burgess, 1996).
The benefit of low-frequency (LF) words over high-frequency
(HF) words in single-item recognition is well documented and
considered a regularity of memory (Glanzer, Adams, Iverson, &
Kim, 1993). Typically this word frequency effect manifests as a
mirror pattern, where hit rates (HRs) are higher and false alarm
rates (FARs) are lower for LF words than for HF words (e.g.,
Glanzer & Adams, 1985). This WF mirror effect is a benchmark
finding that is accounted for by most quantitative models of
recognition memory, albeit with different underlying mechanisms.
For example, some models assume that the uncommon features of
LF words make them particularly diagnostic, thereby increasing
the HR (e.g., Shiffrin & Steyvers, 1997). Common features, on the
other hand, make HF words more similar to other words and

therefore more confusable, increasing the FAR. Other models
assume that the large number of preexperimental contexts in which
HF words are experienced creates confusion and reduces accuracy
(e.g., Dennis & Humphreys, 2001; Reder et al., 2000). All suc-
cessful models of recognition memory, regardless of mechanism,
predict a WF mirror pattern.

One mainstay of studies evaluating WF is that WF is routinely
treated as binary, with low and high categories (cf. Criss &
Malmberg, 2008). In the natural world, however, WF spans a very
wide range. What remains unknown is whether the categorization
of WF into two discrete categories obscures the true underlying
relationship between frequency and memory. While discretizing a
large continuous variable provides a powerful tool for data visu-
alization and analysis, this might also lead to mischaracterizations
of the underlying relationship between the stimulus and the ob-
served behavior. Estes (e.g., 1956) long cautioned against the
uncritical use of averaged participant effects, and the same is true
at the stimulus level (e.g., H. H. Clark, 1973; Freeman, Heathcote,
Chalmers, & Hockley, 2010).

Evaluations of the effect of a third category of words, very low
frequency (VLF) words, offer tantalizing evidence that the rela-
tionship between WF and recognition memory might in fact be
more complicated. Schulman (1976) first showed that recognition
performance is lower for rare words rated as nonwords than for
VLF words rated as familiar. A number of subsequent studies
replicated the finding of lower accuracy for VLF than LF words
(Mandler, Goodman, & Wilkes-Gibbs, 1982; Wixted, 1992; Zech-
meister, Curt, & Sebastian, 1978). Rao and Proctor (1984) repli-
cated this inverted U-shaped function and also found that the
pattern endures under self-paced study. However, interpretation of
these findings is complicated by the fact that the VLF words were
typically judged nonwords by participants. Further, none of the
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studies evaluated WF as the continuous variable that it is. In fact,
Schulman (1976) noted that “no one has bothered to test recogni-
tion memory over the whole range of word frequency” (p. 301)—a
problem that persists today.

The goal of this article is to characterize the relationship be-
tween the continuous property of normative WF and single-item
recognition performance. The resulting data have important impli-
cations for both existing and future theories of episodic memory.
We developed a large stimulus set that contains word frequencies
from a broad range. Each participant saw a subset of words
randomly sampled across the frequency range. In contrast to pre-
vious work, we analyzed performance across the WF range, both
for individual WF values and across participants.

Method

Participants

Four hundred sixty-two undergraduate students at Syracuse Uni-
versity participated in exchange for course credit. Seventy-two
participants did not finish all 15 blocks due to time constraints or
computer malfunction. Of those, 49 completed all three blocks of
single-item recognition, 21 completed two blocks, and two com-
pleted one block. We repeated all analyses on the subset of 390
participants who completed all 15 blocks, and there were no
differences in the results from the full set of 462 participants
reported in this article.

Materials

We developed a stimulus set of 924 words extracted from the
Touchstone Applied Science Associates corpus (Landauer, Foltz,
& Laham, 1998). WF values were selected to represent a broad
range of values (283–1,358 words per million) and to reduce the
correlation between WF and context variability. For each of the
924 words in the data set, we obtained the WF values from Kucera
and Francis (1967) for archival comparison to the literature in
which Kucera and Francis is the standard value reported. Our
stimulus set ranged from 1 to 197 words per million in Kucera and
Francis WF values.

Design and Procedure

The experiment included five different tasks: single-item recog-
nition, associative recognition, cued recall, free recall, and lexical
decision (Hemmer & Criss, 2012a, 2012b). Each task was repeated
three times over the course of the experiment for a total of 15
blocks. The first five blocks consisted of the first presentation of
each of the five tasks (randomly ordered for each participant). For
the remaining 10 blocks the five task types were presented twice in
random order. Task was postcued; therefore participants could not
adopt a study strategy based on the anticipated test type.

All blocks (except lexical decision) began with a study phase in
which participants viewed 20 word pairs presented side by side,
one pair at a time. Each pair remained on the screen for 2 s and was
immediately followed by text asking participants to “Please rate
the degree of association between the two items you just saw” on
a scale ranging from 1 (not at all associated) to 9 (highly associ-
ated). The word pair was not visible on the screen during the

rating. Responses were self-paced by clicking on boxes numbered
1–9 on the screen.

Each study phase was immediately followed by a distractor task.
This was a simple math task where participants continuously
added a series of 15 random digits drawn with replacement from
the range 1–9. Digits were presented at a rate of 3 s per digit, for
a total presentation time of 45 s. After all digits appeared, partic-
ipants typed in their response and received accuracy feedback.

For the remainder of the article we discuss the procedures and
results related to only the single-item recognition task. For the test
stimuli, 10 study items were selected at random from the study list.
The 10 items could be from either the right or the left presentation
position but not from both the left and the right presentation
position for the same study trial. These 10 old items were com-
bined with 10 foil words that had not been previously studied. The
test words were randomly ordered and presented one at a time in
the center of the screen. Participants are asked to “indicate if the
item you see on the screen was on the list you just studied (YES)
or not on the list (NO).” Participants responded by clicking on
boxes presented on the computer screen. Responses were self-
paced.

Each study-distractor-test block was followed by the option to
take a self-paced break. The experiment lasted approximately 1 hr.

Results

Because the distribution of Kucera and Francis (1967) WF
values in the data set were heavily right-skewed, all WF values
were transformed to log scale prior to statistical analysis to meet
the assumption of normality.

Standard WF Analysis

We first analyzed the data in the standard categorical fashion of
assuming WF takes either high or low values. As there are no
well-defined values that constitute high and low, we chose high
and low groupings based on publications by one of the authors
(e.g., Criss & McClelland, 2006; Criss & Shiffrin, 2004). We
chose LF values as those between 1 and 10 (corresponds to values
of less than 1 on a log scale) and HF values as those greater than
50 (greater than 1.7 on a log scale). Figure 1 shows the ubiquitous
mirror effect with a low frequency advantage for hits, confirmed
by a paired t test, t(267) � 3.74, p � .001, and for false alarms,
t(278) � �4.94, p � .001 (any participant who did not have data
in both the LF and HF bin was dropped from the analysis). We
completed this analysis for a large number of other combinations
of high and low values from the literature. The results always
presented as a low-frequency advantage and a mirror effect.

Item-Level Analysis

We conducted an item-level analysis to assess the relationship
between continuous WF and recognition performance at the indi-
vidual WF value. The stimulus set contained 133 unique WF
values, and we computed the average HR and FAR for each value
and then used those as predictor values in the analysis. Figure 2
shows the relationship between WF and recognition performance
across the 133 unique WF values.

To characterize the observed nonmonotonic U-shaped relation-
ship between HR and WF, two regression models were fit to the
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data. The first model was a linear model intended to test
whether the linear relationship predicted in the literature based
on binary evaluations of WF holds for continuous levels of WF
used here. The second model was a quadratic model intended to
test whether a nonlinear relationship provides a better descrip-

tion of continuous WF. Both models were evaluated for
goodness-of-fit compared to the constant model (intercept:
0.848) and for improvement in R2 over the previous model. The
linear model Y � 0.873 � 0.015X did not provide a signifi-
cantly better fit than the constant model (R2 � .007), F(1,

p(
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Figure 1. A traditional word-frequency analysis showing hit rates (circles) and false alarm rates (triangles) as
a function of categorical word frequency. Word frequency is given in log-scaled Kucera and Francis (KF)
frequency values.
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Figure 2. Item-level analysis showing hit and false alarm rates as a function of word frequency for each unique
word frequency value. Black circles and gray squares represent word frequency values averaged over words. The
dashed lines give the linear fit, the solid lines the quadratic fit, and the dotted lines the robust quadratic fit. Word
frequency is given in log-scaled Kucera and Francis (KF) frequency values.
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131) � 0.98, p � .323. The quadratic model Y � 1.029 �
0.269X � 0.090X2 did provide a significantly better fit (R2 �
.12), F(2, 130) � 8.69, p � .001, and it was significantly better
than the linear model, F(2, 130) � 16.36, p � .001.

Two regression models were also fit to the FAR at the item
level. The linear model Y � 0.047 � 0.086X provided a signifi-
cantly better fit than the constant model (intercept: 0.194, R2 �
.15), F(1, 131) � 23.1, p � .001. The quadratic model Y �
0.117 � 0.028X � 0.040X2 also provided a significantly better fit
(R2 � .16), F(2, 130) � 12.7, p � .001. However, the quadratic
model did not provide any further reduction in R2 compared to the
linear model. Thus, the false-alarm data shows the characteristic
relationship of lower FAR for LF than for HF words across the full
range of WF.

A robust quadratic model was fit to the data to discount the
possible influence of outliers. For HR the robust model fit better
than the linear model, F(2, 130) � 23, p � .001, and reduced R2 �
.26 over the quadratic model, F(2, 130) � 25.16, p � .001. For
FAR, the robust model fit better than the linear model, F(2, 130) �
18, p � .001, and reduced R2 � .15 over the quadratic model,
F(2, 130) � 8.97, p � .001. Observation of Figure 2 indicates that
the quadratic fits were not substantially affected by outliers. Note
that Figure 2 shows much higher variability in performance for
both HRs and FARs for very high frequency words. However, this
is likely due to measurement noise rather than being indicative of
a true property of the cognitive system. As mentioned, there were

924 words but only 133 unique WF values. The number of unique
words per value ranged from 1 to 25 (M � 6.95), and very high
frequency values (i.e., log WF � 2) tended to have many fewer
unique words per value (M � 1.44).

Participant-Level Analysis

For statistical analysis, the WF values were binned into 14
approximately equal sized bins (because 924 —the number of
stimuli—is evenly divisible by 14). Because many words in the
stimulus set share the same WF value, it was not possible to
partition the stimulus such that exactly 66 items fell in each bin.
However, each bin contained between 6.1% and 8% of the total
word set. Accuracy was calculated for each bin, for each block,
and for each participant and then averaged over blocks for each
participant and finally averaged for participants for each bin.

The relationship between WF and memory is similar when the
data are analyzed across participants (see Figure 3) and when the
data are analyzed across items (see Figure 2). HRs for both LF and
HF words were better than recognition for the midrange frequency
words. To confirm the nonmonotonicity of the relationship, two
regression models were fit to the data using the same statistical
approach as for the item-level analysis. The linear model Y �
0.828 � 0.014X did not provide a significantly better fit than the
constant model (intercept: 0.828, R2 � .04), F(1, 12) � 0.49, p �
.497. The quadratic model Y � 1.120 � 0.433X � 0.144X2,

Hits
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quadratic model
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Figure 3. Participant-level analysis showing hit rate (circles) and false alarm rate (squares) as a function of
word frequency binned and averaged over participants. The word frequency value is the average value for each
bin. Dashed lines give the linear fit, solid lines the quadratic fit. Word frequency is given in log-scaled Kucera
and Francis (KF) frequency values.
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however, provided a significantly better fit (R2 � .65), F(2, 11) �
10.4, p � .003, and it was significantly better than the linear
model, F(2, 11) � 19.46, p � .001. Two regression models were
also fit to the FAR data at the participant level. The linear model
Y � 0.0276 � 0.095X provided a significantly better fit than the
constant model (intercept: 0.096, R2 � .73), F(1, 12) � 33, p �
.001, as did the quadratic model Y � �0.084 � 0.256X �
0.056X2 (R2 � .77), F(1, 11) � 18.4, p � .001. The quadratic
model, however, did not provide a further reduction in R2,
F(2, 11) � 1.71, p � .226. Thus, the participant-level analysis
replicates the item-level analysis in all respects.

Discussion

Our analysis of WF as a continuous variable in single-item
recognition shows a clear nonmonotonic U-shaped pattern for hit
rates. Both low-frequency and high-frequency words have higher
hit rates than do midrange-frequency words when analyses are
conducted at the item and the participant level. The U-shaped HR
function is complemented by a linear FAR function across WF. By
evaluating WF beyond the standard high/low categories, we have
uncovered a more complex relationship than was previously
known.

It is possible that other properties, such as context variability or
word length, which may be correlated with WF, play a role in the
observed pattern. The field has adopted WF as the theoretically
important property and the focus of empirical and theoretical
development, and we follow suit. However, we explicitly chose
our stimulus set to minimize the correlation between WF and
context variability. While this does not rule out the role of corre-
lated variables, we are reasonably confident that WF itself is the
critical variable here. We also acknowledge that it is perhaps
somewhat unusual that we included multiple memory tasks for
each participant or that participants studied pairs. However, many
published articles have found standard WF effects under such
circumstances (e.g., S. E. Clark, 1992; S. E. Clark & Shiffrin,
1992; Dorfman & Glanzer, 1988; Gillund & Shiffrin, 1984; Hock-
ley, 1992, 1994; May, Cuddy, & Norton, 1979). Further, we too
demonstrate a typical WF mirror effect when we follow tradition
and treat WF as a categorical variable with the values of high and
low (see Figure 1). Therefore, there is no reason to believe that the
specific procedures used here lead to the observed nonlinearity in
the data.

Our pattern of data presents a problem for all models of recog-
nition, which, by design, predict higher HRs and lower FARs for
LF words. Explanations of the WF effect are many, but we
consider three broad categories. First, LF words are better remem-
bered because they attract more attention during encoding (e.g.,
Criss & Malmberg, 2008; Glanzer & Adams, 1990; Malmberg &
Nelson, 2003). Second, LF words are better remembered because
they have fewer preexperimental contexts causing less interference
with memory for the experimental context (Dennis & Humphreys,
2001; Reder et al., 2000). Third, LF words are composed of less
common and therefore more distinctive diagnostic features, lead-
ing to better memory (Landauer & Streeter, 1973; McClelland &
Chappell, 1998; Shiffrin & Steyvers, 1997). Any of these classes
of models could likely be modified to account for the data wherein
HRs have a nonmonotonic and FARs have a linear relationship
with WF. However, the modifications are not immediately obvi-

ous. Further, it seems necessary to posit a second mechanism to
account for the data. That is, it seems implausible to assume that
both lower and very high frequency words receive more attention
or that both very few and very many preexperimental contexts
contribute less interference.

One explanation that could be added to any of the above models
to account for this data is based on expectations developed from
prior experiences. Suppose that, as predicted by most models,
memory accuracy is higher for lower frequency words due to
diagnostic item features, better binding to the experimental con-
text, attention, or some other mechanism. Further, suppose that
when memory is weak, participants make educated guesses about
whether a word was studied. That is, the guess is based on
knowledge developed over the course of life prior to the current
situation (the experiment, in this case). Very high frequency words
are encountered frequently (by definition), and thus an educated
guess would predict that a very high frequency word was in fact
studied (regardless of the true status of the test item), elevating
both hits and false alarms for very HF words. We suggest that the
data presented here might be explained by a model that combines
higher accuracy for lower frequency words and a bias to claim that
very high frequency words were studied based on prior experience.
Such a mechanism is not present in any existing model of memory
but could potentially be added with appropriate modifications.

In summary, the relatively simple but elegant methods of mea-
suring WF as the continuous variable that it is, combined with
analyzing data at both the item and participant levels, has revealed
a new finding: a U-shaped HR function that is inconsistent with the
hallmark WF mirror effect. Model development must incorporate
this new finding, and we propose considering the role that expec-
tations based on prior knowledge play in making episodic memory
judgments.
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