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a b s t r a c t

Recent years have seen an increased interest in models of recognitionmemory’s decision stage. However,
only a relatively narrow set of candidate models has been considered thus far, with comparisons being
typically restricted to signal detection and high-threshold models. Here, we consider a third alternative,
Luce’s (1963) low-threshold model (LTM). We evaluated the LTM’s predictions for existing Yes–No
receiver-operating characteristic data (Dube et al., 2012) as well as data from K -alternative ranking tasks
(Kellen and Klauer, 2014). The LTM, which to this point has been largely ignored in the recognition
memory literature, turns out to perform at least as well as the most popular model in this domain,
the Gaussian signal detection model. These results suggest future work concerning the decision stage
of recognition should consider the LTM in addition to the continuous and discrete-state models that have
dominated the literature so far.

© 2016 Published by Elsevier Inc.
One key aspect of R. Duncan Luce’s seminal body of work is
the focus on the basic constructs or ‘‘building blocks’’ underlying
psychological theories. For example, Luce’s later work concerned
the formal representation of subjective intensities (e.g., brightness,
loudness, monetary gains and losses), questioning the century-old
assumption that such representations are additive (see Luce, 2000).
According to Luce, the fact that traditional theories successfully
account formost of the data at large does notmean that alternative
accounts should be ignored (Luce, 2010). Due to their broad
theoretical relevance, the theoretical results reported by Luce
concerning this specific question have led to empirical work in
distinct domains such as visual psychophysics (e.g., Steingrimsson,
2011) and economic decision-making (e.g., Davis-Stober & Brown,
2013).

The present work will focus on another fundamental question
raised by Luce: Whether the subjective representations of stim-
uli that underlie individuals’ judgments are continuous or discrete.
This question, originally referring to psychophysical tasks inwhich
individuals had to detect visual or auditory stimuli, led to one of
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Luce’s most controversial contributions, the low-threshold model
(LTM; Luce, 1963). In contrast to the popular class of signal detec-
tion (SDT) models that assume an infinite number of mental states
((Swets, Tanner, & Birdsall, 1961)), the LTM only postulated two
distinct mental states – ‘‘detection’’ and ‘‘no detection’’ – which
were separated by a fixed sensory threshold (for discussions on this
notion, see Corso, 1963 andRouder&Morey, 2009). Despite its sim-
plicity, the LTM and the two mental states posited were sufficient
to account for several important findings, therefore constituting a
challenge to the widely-held notion that a continuous representa-
tion is necessary. Krantz (1969) discussed some of the applications
and limitations of the model, and proposed an extended LTM that
adressed the latter (see also Wickelgren, 1968).

The LTM received some attention shortly after its introduction
(e.g., Krantz, 1969; Larkin, 1965; Lindner, 1968; Norman, 1964;
Wickelgren, 1968; for a review, see Luce & Green, 1974), but in
the last three decades it has been all but ignored in the literature
(for a recent exception, see Hsu & Doble, 2015). To a large extent,
this situation can be attributed to the enormous popularity of SDT
models. According to Luce, sensory psychologists were perhaps
not greatly interested in the fundamental question of whether
sensation is discrete or continuous and yet were willing to dismiss
the LTM without any clear empirical or formal rationale (Luce,
1997, p. 85–86). It is worth pointing out that from very early on
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Fig. 1. Examples of ROCs as predicted by the HTM and LTM.
Luce himself admitted to holding a conflicting position in this
debate (having ‘‘nagging doubts’’; Luce, 1977, p. 468). Specifically,
Luce was divided between the suspicion that the representation
of certain sensory attributes is indeed discrete and the formal
elegance and empirical success of continuous accounts (Luce,
1997, p. 85), including his own highly influential Choice Theory
(Luce, 1959).

In the domain of recognition memory, distinguishing contin-
uous and discrete accounts is a focal point of recent discus-
sions (Batchelder & Alexander, 2013; Bröder, Kellen, Schütz, &
Rohrmeier, 2013; Bröder & Schütz, 2009; Chechile, 2013; Chen,
Starns, & Rotello, 2015; Dube, Rotello, & Pazzaglia, 2013; Dube &
Rotello, 2012; Dube, Starns, Rotello& Ratliff, 2012; Kellen & Klauer,
2014, 2015; Kellen, Klauer, & Bröder, 2013; Malmberg, 2002; Paz-
zaglia, Dube, & Rotello, 2013 and Province & Rouder, 2012). Sur-
prisingly, this debate has not considered low-threshold accounts
and has instead focused on models assuming high thresholds (e.g.,
Bröder & Schütz, 2009). The purpose of the present manuscript is
to fill that gap and evaluate the relative merits of the LTM in the
domain of recognition memory. In addition to introducing a new
element into a long-standing debate, we also honor the broad the-
oretical relevance of Luce’s work.

First, we will introduce Luce’s LTM and establish how it
contrasts with typical high-threshold models. Second, very much
along the lines of Luce (1963), we will evaluate the LTM’s
ability to account for previously published recognition data,
namely Receiver Operating Characteristic (ROC) data and ranking
judgments. As will be shown below, the LTM provides a reasonable
account of both kinds of data, a success that beckons its
consideration in further empirical and theoretical work.

1. High- and low-threshold models

In order to introduce both high- and low-threshold models in
the context in which theywere originally developed, let us assume
a detection Yes–No (YN) task comprised of signal (s) stimulus trials
and noise (n) trials in which participants are requested to indicate
whether they have perceived a signal, answering ‘‘Yes’’ (Y ) or ‘‘No’’
(N). Y responses to signal and noise trials are usually referred to as
hits and false alarms, respectively. Initial discrete-state accounts of
detection judgments (e.g., Blackwell, 1953 and Stevens, Morgan, &
Volkmann, 1941) assumed a single high threshold that separates
two mental states D (detection) and D̄ (no detection). Due to the
inherent assumption that state D can only be reached on trials in
which a signal was presented (i.e., only signals can be ‘‘detected’’),
the threshold is commonly referred to as ‘‘high’’. If the threshold
can be surpassed in noise trials as well then it would be referred to
as ‘‘low’’.
In signal trials, the (high) threshold is surpassed with prob-
ability qs, which in turn leads to a Y response. When detection
fails with probabilities 1 − qs and 1 in signal and noise trials, re-
spectively, individuals are forced to guess whether a signal was
presented or not, with response Y occurringwith probability b. Ac-
cording to this high-threshold model (HTM), the probabilities of a Y
response in signal and noise trials are given by

P(Y | s) = qs + (1 − qs)b, (1)
P(Y | n) = b. (2)

The relationship between hit and false-alarm probabilities when
varying only response bias (i.e., the guessing parameter b) is
referred to as the model’s Receiver Operating Characteristic (ROC)
function. Based on Eqs. (1) and (2) it is easy to see that the HTM’s
predicted yes–no ROC corresponds to a straight line that goes
through points (0, qs) and (1, 1) (see the left panel of Fig. 1). Yes–no
ROC data can be obtained by selectively manipulating individuals’
response biases, for instance, by varying the base rates of signal and
noise trials across test blocks or by varying the payoffs associated
with Y and N responses in both types of trials. In a seminal study
by Swets et al. (1961), individuals’ response biases in a visual
detection task were varied by means of a payoff manipulation. The
ROCs obtained from a sample of four participants are shown in
Fig. 2. It is clear that the HTM’s linear ROC predictions are grossly
inconsistent with most of the individual data, with the ‘‘more
conservative’’ ROC points (lower hits and false-alarm rates) being
underestimated and the ‘‘more liberal’’ points (higher hits and false
alarms) being overestimated. Instead, the data seem to be better
captured by the SDT model (Green & Swets, 1966; Kellen & Klauer,
in press and Swets et al., 1961).

In contrast to the HTM and its assumption of two mental states
D and D̄, the SDT model assumes that stimuli are presented across
a continuous evidence axis, with Y judgments occurring when the
evidence surpasses a response criterion κ . The criterion differs
from the thresholds of LTMs and HTMs in that it is not fixed
and may vary according to the individual’s biases or goals. It is
commonly assumed that the distributions of evidence values in
signal and noise trials are Gaussian with parametersµs, σs,µn, and
σn (for further details, see Green & Swets, 1966). According to the
SDT model, hit and false-alarm probabilities are given by:

P(Y | s) = Φ


µs − κ

σs


, (3)

P(Y | n) = Φ


µn − κ

σn


. (4)

Luce (1963) argued that the results of Swets et al. (1961) did
not demonstrate the necessity of a continuous account like SDT
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Fig. 2. ROC data from Swets et al. (1961). The solid line corresponds to the HTM predictions whereas the dashed line corresponds to the Gaussian SDT predictions. We fitted
both models to the original data (reported in Table 2 of Luce, 1963) using the maximum-likelihood method.
and proposed the LTM as a viable threshold-based alternative. The
LTM differs from the HTM in two important ways: First, it assumes
a ‘‘low’’ threshold that can be reached in both signal and noise
trials with probabilities qs and qn, with qs ≥ qn. In other words,
individuals might erroneously detect a ‘‘signal’’ when there is in
fact only noise, although presumably at a lower rate than when
a signal is in fact presented. Note that Luce (1963) did not make
any assumptions regarding the exact way these sensory states are
entered; he only proposed that the process of entering them is
characterized by unknown stochastic processes. This is important
because it means that the LTM is not only applicable to sensory
decisions; it is equally applicable to recognitionmemory decisions,
among others.

Second, the LTM assumes that the response mapping of
mental state D depends on the individuals’ responses biases:
Even in the occurrence of detection, individuals can respond
‘‘No’’ in order to conform to the requirements of the task; for
instance when adjusting the rate of Y responses according to the
task’s base rates or payoff schedules. The rationale here is that
even though the model only assumes two sensory states, other
non-sensory states affect their disposition toward each of the
available response options, enabling their occurrence with some
probability. Presumably the non-sensory states are independent
of whatever states are relevant for the decision to be made, and
therefore influence the performance in recognition memory tasks
in the same manner as in sensory tasks. Therefore the following
derivations are highly generalizable.1

1 Note that the occurrence of ‘‘response reversals’’ (response N in state D) is
not unreasonable or unexpected (e.g., Van Zandt & Maldonado-Molina, 2004),
According to the LTM, the hit and false-alarm probabilities are
given by

P(Y | s) =


qs(b + 1), if b < 0 (conservative)
qs + (1 − qs)b, if b ≥ 0 (liberal) (5)

P(Y | n) =


qn(b + 1), if b < 0 (conservative)
qn + (1 − qn)b, if b ≥ 0 (liberal) (6)

with −1 ≤ b ≤ 1.
According to the LTM, individuals can express a ‘‘liberal’’ or

‘‘conservative’’ response strategy ormode. Under a liberal strategy,
individuals always respond Y when state D is reached. When in
state D̄, response Y is produced via guessing with probability b.
Under the liberal strategy, the minimum P(Y | s) and P(Y | n)
are qs and qn, respectively (occurring when guessing probability b
is zero), and the predicted ROC points correspond to a line segment
between coordinates (qs, qn) and (1, 1). Under the conservative
strategy, all stimuli in state D̄ are rejected, and stimuli in state
D are only accepted with probability b + 1. The notion here is
that when all stimuli of uncertain status are rejected, individuals
express an increasing conservatism by starting to reject stimuli
that were detected. This conservative strategy constrains hit and
false-alarm probabilities to range from a minimum of 0 to qs and
qn, respectively. These constraints yield a linear ROC segment from
(0, 0) to (qn, qs). Altogether, the LTM’s predictions across response
strategies and values of b yield a piecewise linear ROC comprised

especially if individuals are somewhat aware that they will sometimes reach state
D in noise trials. In fact, the well-known phenomenon of probability matching (e.g.,
Healy & Kubovy, 1981) suggests that such behavior is not uncommon.
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Fig. 3. ROC data from Swets et al. (1961). The solid line corresponds to the LTM predictions whereas the dashed line corresponds to the Gaussian SDT predictions. We fitted
both models to the original data (reported in Table 2 of Luce, 1963) using the maximum-likelihood method.
of two branches that meet at the point (qs, qn) (see the right panel
of Fig. 1).2

As shown in Fig. 3, when applied to the visual detection data
from Swets et al. (1961) using the maximum-likelihood method,
the LTMmanages to provide a reasonable approximation. Themost
obvious misfit of the LTM to the data comes from the predicted
‘‘corner’’ at (qn, qs): Luce (1963) argued that such a mismatch be-
tween the fitted model and the data can emerge when there is
a probabilistic adjustment of strategies across trials (i.e., individ-
uals shift between the two ROC segments; see also Wickelgren,
1968, p. 128).3 In light of these results, Luce (1963) concluded that a
low-threshold account is not ‘‘clearly wrong’’ and therefore should
not be automatically excluded in favor of a continuous SDT ac-
count.

2 The definition of the LTMdiffers superficially from Luce’s (see Luce, 1963, p. 64).
For example, according to Luce’s definition, P(Y | n) = qnb′ if P(Y | n) < qn
(conservative), and P(Y | n) = qn + (1 − qn)b′′ if P(Y | n) ≥ qn (liberal),
with 0 ≤ b′, b′′

≤ 1. It is easy to see that if b′
= b + 1 and b′′

= b. The two
parametrizations are equivalent, given that P(Y | n) < qn when b < 0 and
P(Y | n) ≥ qn when b ≥ 0. We prefer the present definition of the LTM as it is
more intuitive.
3 The sameway that the aggregation of data coming from two strategies can lead

to mismatches between the model and the data, aggregating data from different
participants also leads to distortions. Another issue is the unlikely assumption that
trials are independent and identically distributed (i.e., that there are no sequential
effects). Atkinson (1963) proposed amodel in which detection probabilities change
across trials, depending on the type of trials that were previously encountered, and
its effect on the predicted ROCs.
1.1. 2AFC ROC data

Luce (1963) also discussed the LTM in the context of a two-
alternative forced-choice (2AFC) task: During each trial, a signal
and a noise stimulus are presented in two separate observation
intervals (⟨s, n⟩ and ⟨n, s⟩). The participants task is to correctly
identify the interval in which the signal stimulus was included,
with ‘‘1’’ and ‘‘2’’ denoting the responses ‘‘first observation
interval’’ and ‘‘second observation interval’’, respectively. Luce
(1963) assumed that individuals make their choices based on the
joint mental states ⟨D, D̄⟩, ⟨D̄,D⟩, ⟨D,D⟩, and ⟨D̄, D̄⟩. In the first
two joint mental states, the decision for the subject is rather easy,
given that only one stimulus was detected (unless the experiment
somehow imposes extreme response biases), but the latter two
states require the subject to guess. Note that in the case of ⟨D,D⟩,
individuals might end up choosing the noise stimulus even though
the signal was detected as well. When qs(1− qn) < P(1 | ⟨s, n⟩) ≤

1− qs(1− qn) and qn(1− qs) < P(1 | ⟨n, s⟩) ≤ 1− qn(1− qs), the
probability of the first observation interval being selected as the
one containing the signal in ⟨s, n⟩ and ⟨n, s⟩ trials is
P(1 | ⟨s, n⟩) = qs(1 − qn) + qsqnv + (1 − qs)(1 − qn)w, (7)
P(1 | ⟨n, s⟩) = qn(1 − qs) + qnqsv + (1 − qn)(1 − qn)w, (8)
where v andw are guessing parameters for states ⟨D,D⟩ and ⟨D̄, D̄⟩.
It is easy to see that
P(1 | ⟨s, n⟩) = P(1 | ⟨n, s⟩) + qs − qn, (9)
which corresponds to a linear ROC segment with slope 1 running
from coordinates {qn(1 − qs), qs(1 − qn)} to {1 − qs(1 − qn),
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Fig. 4. Example of YN and 2AFC ROC (solid and dashed lines, respectively) as
predicted by the LTM with parameters qs = 0.50 and qn = 0.20.

1 − qn(1 − qs)}. Moreover, if one sets v = w =
qsqn

qsqn+(1−qs)(1−qn)
,

it is easy to see that the YN ROC always meets the 2AFC ROC from
below at coordinate {qn, qs}, which corresponds to the ‘‘corner’’ of
the YN ROC. Examples of 2AFC and YN ROCs are given in Fig. 4.

Due to the lack of appropriate data, Luce did not conduct an
evaluation of the LTM predictions for 2AFC data (in particular the
existence of a linear segmentwith slope 1) nor its relationshipwith
YN data. Fortunately, relevant data were reported by Atkinson and
Kinchla (1965), who collected 2AFC ROCs obtained via a payoff
manipulation. Fig. 5 shows the 2AFC ROC data from the eight
participants that took part in this study, data that support the LTM
prediction of a linear ROC segment with slope 1 (for similar data,
see also Kinchla, Townsend, Vellott, & Atkinson, 1966 and Norman,
1964). Luce later expressed his frustration with the fact that the
consistency between 2AFC data and the LTM predictions did not
affect researchers’ reluctance toward adopting threshold accounts
(see Luce, 1997, pp. 84).

Now that we have described the LTM in the context in which it
was originally proposed, we will turn to the domain of recognition
memory in which the same SDT and HTM accounts proposed
in the perception domain are usually compared. Importantly,
consideration of the LTM has so far been almost completely absent
from this domain.

2. Evaluating the LTM with recognition-memory data

Recognitionmemory is the discrimination of events one has ex-
perienced from events one has not experienced in a specific past
context. This basic faculty is particularly important in testingmod-
els of human memory (for reviews, see Malmberg, 2008 and Raai-
jmakers & Shiffrin, 2002). In the laboratory, recognition memory
is most often studied by presenting subjects with a sequence of
stimuli to study, and then testing their memory for those stimuli
via a yes–no, forced choice, or confidence-rating procedure. Over
the past few decades, memory researchers have debated whether
the basis of recognition judgments is a continuous representation
of a prior occurrence of a stimulus or a discrete-state representa-
tion. The genesis of this debate can be traced back to early formal-
modeling approaches to memory formation, representation, and
retrieval (Gillund & Shiffrin, 1984). Among the first applications
of a continuous account was the Gaussian SDT model, which suc-
ceeded in describing individuals’ judgments about the previous ex-
perience of stimuli (Egan, Schulman, & Greenberg, 1959). Within
the framework of memory models, the evidence axis in SDT repre-
sents the familiarity of tested stimuli.
However, like Luce (1963), somememory researchers had their
doubts that the prior occurrence of a stimulus could only be de-
scribed by a continuous model. For instance, some researchers
proposed models assuming that the recognition of studied items
sometimes occurs via the successful retrieval of episodic details
(i.e., these models postulate the existence of discrete memory
states; e.g., Atkinson & Juola, 1974 and Mandler, Pearlstone, &
Koopmans, 1969). In the absence of episodic retrieval, recognition
judgments are assumed to rely on the familiarity of the stimulus,
as postulated by SDT. Due to the assumption of two forms of re-
membering these models are usually referred to as dual-process
models (for reviews, seeMalmberg, 2008;Wixted, 2007 andYoneli-
nas & Parks, 2007). Meanwhile, other researchers have argued that
models that exclusively assume discrete states by means of high
thresholds provide a sufficient account of recognition-memory
judgments (e.g., Bröder & Schütz, 2009; Chechile, 2013; Kellen
et al., 2013; Klauer & Kellen, 2010 and Province & Rouder, 2012).

So far, the recognition memory literature has focused on SDT,
HTM, and dual-process models without considering the LTM (for
exceptions, see Batchelder, Riefer, &Hu, 1994 and Bayen,Murnane,
& Erdfelder, 1996). The LTM’s assumption that new items can
be detected as old makes it a particularly interesting candidate
in the case of recognition memory given the predominance of
phenomena involving the false remembering of new items (for
a review, see Malmberg, 2008). But how does the LTM actually
fare when fitted to recognition memory data? In an attempt to
answer this question we examine the performance of LTM in
fits to ranking and ROC data from recognition memory tasks
(Dube et al., 2012; Kellen & Klauer, 2014). A critical property of
the data coming from these two studies is that in both cases
the Gaussian SDT model was found to provide a better account
than the high-threshold competitor.4 Also, both studies included
a within-list study-strengthmanipulation (some of the itemswere
presented multiple times during the study phase) that selectively
affected the detection of old items, thereby imposing additional
constraints on themodel (Province&Rouder, 2012; see alsoKrantz,
1969, p. 312).5

Moreover, one novelty of the present analyses is that we also
evaluate the LTM using data from a ranking task. The LTM has
never been evaluatedusing this kind of data (Kellen&Klauer, 2014;
see also Krantz, 1969, p. 316). In a ranking task, participants rank
the items according to their likelihood of being the studied item.
The analysis of ranking data is particularly relevant in the present
context given that the HTMmakes clear predictions that have been
recently rejected in favor of SDT accounts (for details, see Kellen &
Klauer, 2014).

Finally, in order to establish a reasonable reference point when
evaluating the LTM’s performance, we will compare its goodness
of fit with that of the Gaussian SDT model. The purpose of this
comparison is to allow us to see whether any failure of LTM is
necessarily due to its assumption of discrete states. Although there
are good reasons to believe that goodness-of-fit results do not
provide the most sensible assessment of model performance (e.g.,
Myung, 2000), they are nevertheless able to indicate whether a
model grossly fails to account for the present data.

4 The extended high thresholdmodel used in the recognition-memory literature,
the two-high-threshold model, assumes three memory states rather than two. Old
items are detected as old and new items are detected as new with probabilities Do
andDn , respectively.When both detection processes fail, items are in an uncertainty
state and judged according to a guessing process (see Bröder & Schütz, 2009).
5 It should be noted that this selective influence of old-item detection is ensured

by the fact that both weak and strong items (e.g., items studied once and thrice,
respectively) are studied together in the same study phase, with both item types
having no distinctive feature (e.g., a difference in color). When these conditions are
not met, study-strength effects are expected to produce changes in both old- and
new-item detection (see Criss, 2006, 2009, 2010).
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Fig. 5. ROCdata fromAtkinson andKinchla (1965). The solid black lines correspond to the LTMpredictionsweobtained viamaximum-likelihood estimation. For convenience,
we fixed qn to be zero.
2.1. Old–new ROC data

The ROCs analyzed here come from two experiments originally
reported by Dube et al. (2012), who collected old–new (ON)
recognition judgments across five response-bias conditions. The
level of response bias was manipulated by varying the base rate
of old and new items across different study-test blocks. In both
experiments half of the old items were studied once and the
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Table 1
Model fits.

Data N LTM SDT
Summed G2 p < 0.05 Summed G2 p < 0.05

Dube et al. (2012, Exp 1) 21 191.97 (67%) 14% 216.20 (33%) 29%
Dube et al. (2012, Exp 2) 26 250.29 (73%) 19% 267.66 (27%) 27%
Kellen and Klauer (2014, Exp 1) 22 53.74 (55%) 0% 58.56 (45%) 0%
Kellen and Klauer (2014, Exp 2) 23 37.34 (52%) 17% 28.65 (48%) 13%

Note. N = number of participants. The values in parentheses correspond to the percentage of datasets for which the respective model provided the best fit. Columns
‘‘p < 0.05’’ indicate the percentage of datasets where a model produced statistically-significant misfits.
Table 2
Median parameter estimates (interquartile ranges).

Data LTM SDT
qw
s qss qn µw

s µs
s σs

Dube et al. (2012, Exp 1) 0.64 (0.10) 0.91 (0.11) 0.11 (0.12) 1.52 (1.35) 2.56 (3.13) 1.38 (2.17)
Dube et al. (2012, Exp 2) 0.57 (0.19) 0.90 (0.10) 0.08 (0.14) 1.23 (0.82) 2.38 (4.45) 1.39 (2.80)
Kellen and Klauer (2014, Exp 1) 0.34 (0.18) 0.63 (0.25) 0.09 (0.16) 0.40 (0.34) 0.90 (0.79) 1.24 (0.36)
Kellen and Klauer (2014, Exp 2) 0.52 (0.25) 0.84 (0.14) 0.07 (0.08) 1.04 (0.94) 2.09 (1.42) 1.49 (0.41)
other half multiple times (five and 10 times in Experiments 1
and 2, respectively). The experimental design used in both studies
provides a total of fifteen degrees of freedom.

In order to fit the data from these two studies, the LTM
requires eight free parameters: Three detection parameters for
strong, weak, and new items (qw

s , q
s
s, and qn), and five response

bias parameters bi, i = 1, . . . , 5. The Gaussian SDT model
implemented here had the same number of parameters (see Dube
et al., 2012): Two mean familiarities for weak and strong items
(µw

s and µs
s), a common standard-deviation parameter for studied

items (σs) and five response criteria κi (note that µn and σn are
fixed to 0 and 1 without loss of generality). The LTM and SDT
models were fitted with the R package MPTinR ((Singmann &
Kellen, 2013)) using the maximum-likelihood method. Multiple
fitting runs were conducted in order to avoid local minima.

As can be seen in Table 1, the overall fit results (quantified via
the G2 statistic) were reasonable, with the LTM slightly outper-
forming the SDT model in both experiments. Also, the LTM pro-
duced significant misfits (p < 0.05) less often that the SDT model.
However, bothmodels provided similar accounts as they tended to
succeed and fail together (smallest G2 correlation r = 0.87, largest
p < 0.001). The median parameter estimates (see Table 2) from
both models seem reasonable. For reference purposes, Fig. 6 de-
picts the ROC data that corresponded (the closest) to the LTM’sme-
dian fits in the two experiments. Altogether, this analysis shows
that the LTM fits this set of ROC data at least as well as the SDT
model.

2.2. Ranking judgments

The ranking data come from two experiments with a total of
forty-five participants. In each trial of a K -alternative ranking task,
individuals ranked K − 1 new items and 1 old item according to
their belief that the items were previously studied (Rank 1 being
attributed to the item judged to be the one most likely to be old).
Participants were informed that only one alternative in each trial
was actually old. The probability that the old item is assigned rank
i is denoted by Ri. Kellen and Klauer’s (2014) Experiments 1 and
2 used a four- and a three-alternative ranking task, respectively.
In addition to the number of alternatives per test trial, the two
experiments differed in terms of the study time of each word
(600 ms and 1200 ms in Experiments 1 and 2, respectively).

Like the previously-analyzed ROC experiments, both studies
included a study-strength manipulation, with half of the old items
in the study list being studied once (weakwords) and the other half
thrice (strong words). This study-strength manipulation played a
critical role in analyses conducted by Kellen and Klauer (2014): Let
c2 be the conditional probability that the old item is assigned rank
2, given that it was not assigned rank 1; i.e., c2 =

R2
1−R1

. The SDT
model predicts c2 to be larger for strong words than weak words
(cw

2 < cs2) while the HTM predicts no difference whatsoever (cw
2 =

cs2; see Kellen & Klauer, 2014, Appendix). The results from both
experiments showed greater c2 values for strong words, thereby
rejecting the null-effect prediction established by the HTM.

The predictions of the LTM for the case of ranking judgments
can be derived from Luce’s (1963) approach for the case of 2AFC
judgments: Higher rankings (lower i) are attributed to detected
items; when k items are detected, the first k rankings are randomly
attributed to them. The remaining ranks are randomly attributed
to non-detected items. According to the LTM, the probability of an
old item among K − 1 new items being assigned rank i is given by

Ri = qsξi + (1 − qs)ηi, (10)

with

ξi =

K
j=i

1
j


K − 1
j − 1


qj−1
n (1 − qn)K−j, (11)

ηi =

i−1
m=0

1
K − m


K − 1
m


qmn (1 − qn)K−m−1. (12)

It can be shown that the LTM is in line with SDT as it also
predicts that c2 will increase in the context of study-strength
manipulations. This prediction stems from the fact that detected
new items can be attributed rank 1 even when the old item was
also detected. Let f (qs) = R2(qs, qn) and g(qs) = 1 − R1(qs, qn),
and c2(qs) =

f (qs)
g(qs)

for some fixed value of qn. For example, when
K = 3, the derivative c ′

2(qs) = 3qn×(−q2n+qsqn−2qs+2qn+2)−2

is a strictly non-negative function, indicating that c2 increases as a
function of qs. Equivalent results are found for other K .

Contrary to the case of ROC data no response-bias parameters
are estimated here, only the ‘‘structural’’ parameters related
to detection probabilities (qw

s , qss, and qn) and the familiarity
distributions (µw

s , µs
s, and σs). Experiments 1 and 2 provide six

and four degrees of freedom, respectively, which are sufficient to
estimate these parameters and test the models’ goodness of fit. As
shown in Tables 1 and 2, the LTM and the SDT models provided a
similarly good account of the data and the observed c2 (see Fig. 7).
As with the ROC data, the two models produced similar accounts
of the ranking judgments in the sense that they tended to fail and
succeed in the same cases (smallestG2 correlation r = 0.50, largest
p = 0.02).
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Fig. 6. Individual ROC data Dube et al. (2012) that correspond to the LTM’s median fits (participants 16 and 14 in Experiments 1 and 2, respectively). The solid lines
correspond to the LTM predictions whereas the dashed lines correspond to the Gaussian SDT predictions.
Fig. 7. Observed individual c2 values for weak and strong words (in gray and black, respectively) plotted against their respective LTM and SDT predictions.
3. Discussion

Luce argued that the LTM did not receive a sufficient level of
attention and scrutiny from researchers (Luce, 1997). With this
in mind, the present work aimed at introducing the model to a
new audience and evaluating its performance in the domain of
recognition memory, where it has been all but ignored. As it turns
out, the LTM is able to account for ROC and ranking data at least
as well as the standard SDT model. We hope that these results will
encourage researchers to consider this model in future work. The
use of the LTMseemsparticularly promising in the characterization
of associate and semantic false memories, phenomena that
have led to the development of models incorporating erroneous
retrieval processes (see Brainerd, Gomes, & Moran, 2014). The
low thresholds assumed by the LTM could account for these false
recognitions in a simple and straightforward manner.

Although the LTM provided a good account of the present data,
further tests are required. In this respect, it is important to keep
in mind that failures are to be expected. Also, that solutions have
been proposed for some of these failures. For example, Chen et al.
(2015) showed that threshold models cannot adequately account
for study-strength manipulations that include conditions in which
performance is virtually perfect. This failure was originally
discussed by Krantz (1969), who proposed that in addition to D̄ and
D, there is a ‘‘super-detection’’ state D∗ in which the individual is
absolutely certain that the item was previously studied. This third
state is associated with three important assumptions: (a) only old
items can reach it; (b) old items in this state are always judged to
be old; and (c) state D∗ dominates D, which means that when two
items are in these two states (e.g., in the context of a 2AFC task),
the one in state D∗ is always chosen to be the old one.

Moreover, some LTM failures could be attributed to the exact
waymental states and biases aremapped onto observed responses.
Luce (1963) assumed that N responses to detected items can only
occur when the same answer is given to all items in D̄ (i.e., when
individuals assume a conservative strategy). As shown by Rouder,
Province, Swagman, and Thiele (submitted for publication), a more
general state-response mapping function can be introduced by
allowing all responses to be produced under all states. Thus, in
the case of the YN task, the probabilities of hits and false alarms
correspond to:
P(Y | s) = qsh + (1 − qs)b, (13)
P(Y | n) = qnh + (1 − qn)b, (14)
where h and b are response-bias parameters. Rouder et al.
(submitted for publication) showed that this model can account
for any single ROC function but is nevertheless testable by means
of its assumption of conditional independence (Province & Rouder,
2012; see also Krantz, 1969)6: Conditional on a state being reached,

6 Note that the SDTmodel, when devoid of parametric assumptions, can describe
any ROC data (Rouder et al., submitted for publication).
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the probability of a given response is only dependent on the
state-response mapping parameter (e.g., conditional on D, the
probability of response Y is always h). When the experimental
design introduces a study-strength manipulation that only affects
the probability of reaching state D (as in the memory studies used
in the present reanalysis), threshold models are bound to make
more precise or constrained predictions (see Province & Rouder,
2012 and Rouder et al., submitted for publication).

Finally, it is important to note that the theorizing andmodeling
of the processes involved in memory occurs at a lower level than
that of the LTM. Perhaps for this reason, measurement models such
as the HTM and LTM have been applied to tasks as varied as per-
ceptual classification and source memory under the mistaken as-
sumption that they make no theoretical assumptions which could
affect their measurement accuracy (Pazzaglia et al., 2013). On the
other hand, as pointed out by Dube et al. (2013), measurement
models such as the LTM and SDTmodel constrain the space of pos-
sible ‘‘process’’ models through their strong constraints on the na-
ture of the process’ output (e.g., the number of discrete states, the
shape of the evidence distributions). These assumptions directly
impact their accuracy and validity as measurement tools. Further-
more, measurement models may also have strong implications for
lower level ‘‘process’’ models to the extent that the measurement
models’ general assumptions are justified for a given dataset. For
instance, if a measurement model is disconfirmed by some new
finding, then all members of the set of process models that the
measurementmodel describes are also disconfirmed. Note that the
converse does not necessarily hold because process models can be
disconfirmed based on factors other than those that are incorpo-
rated into a particular measurement model.

In sum, the LTM turns out to provide a good account of existing
recognition memory data. The model can be tailored to different
types of recognition memory tasks, and it can be generalized in
several directions, showing that the scope of threshold models of
recognition is larger than previously thought.

Acknowledgment

We thank Bill Batchelder for his valuable comments.

References

Atkinson, R. C. (1963). A variable sensitivity theory of signal detection. Psychological
Review, 70, 91–106. http://dx.doi.org/10.1037/h0041428.

Atkinson, R. C., & Juola, J. F. (1974). Search and decision processes in recognition
memory. In D. H. Krantz, R. D. Atkinson, R. D. Luce, & P. Suppes (Eds.),
Contemporary developments in mathematical psychology, Vol. 1: Learning,
memory and thinking (pp. 243–293). San Francisco: Freeman.

Atkinson, R. C., & Kinchla, R. A. (1965). A learning model for forced-choice detection
experiments. British Journal of Mathematical and Statistical Psychology, 18,
183–206. http://dx.doi.org/10.1111/j.2044-8317.1965.tb00341.x.

Batchelder, W. H., & Alexander, G. E. (2013). Discrete-state models: Comment on
Pazzaglia, Dube, and Rotello (2013). Psychological Bulletin, 139, 1204–1212.
http://dx.doi.org/10.1037/a0033894.

Batchelder, W. H., Riefer, D. M., & Hu, X. (1994). Measuring memory factors
in source monitoring: Reply to Kinchla. Psychological Review, 101, 172–176.
http://dx.doi.org/10.1037//0033-295X.101.1.172.

Bayen, U. J., Murnane, K., & Erdfelder, E. (1996). Source discrimination, item
detection, and multinomial models of source monitoring. Journal of Ex-
perimental Psychology: Learning, Memory, and Cognition, 22, 197–215.
http://dx.doi.org/10.1037//0278-7393.22.1.197.

Blackwell, H.R. (1953). Psychological thresholds: Experimental studies of methods
of measurement (Bulletin No. 36). University of Michigan, Engineering research
Institute.

Brainerd, C. J., Gomes, C. F. A., &Moran, R. (2014). The two recollections. Psychological
Review, 121, 563–599. http://dx.doi.org/10.1037/a0037668.

Bröder, A., Kellen, D., Schütz, J., & Rohrmeier, C. (2013). Validating a two-high
thresholdmodel for confidence rating data in recognitionmemory.Memory, 21,
916–944. http://dx.doi.org/10.1080/09658211.2013.767348.

Bröder, A., & Schütz, J. (2009). Recognition ROCs are curvilinear—or are they? On
premature arguments against the two-high-threshold model of recognition.
Journal of Experimental Psychology: Learning, Memory, and Cognition, 35,
587–606. http://dx.doi.org/10.1037/a0015279.
Chechile, R. A. (2013). A novel method for assessing rival models of recognition
memory. Journal of Mathematical Psychology, 57, 196–214.
http://dx.doi.org/10.1016/j.jmp.2013.07.002.

Chen, T., Starns, J. J., & Rotello, C. M. (2015). A violation of the conditional
independence assumption in the two-high-threshold model of recognition
memory. Journal of Experimental Psychology: Learning, Memory, and Cognition,
41, 1215–1222. http://dx.doi.org/10.1037/xlm0000077.

Corso, J. F. (1963). A theoretico-historical review of the threshold concept.
Psychological Bulletin, 60, 356–370. http://dx.doi.org/10.1037/h0040633.

Criss, A. H. (2006). The consequences of differentiation in episodic memory:
similarity and the strength basedmirror effect. Journal of Memory and Language,
55(4), http://dx.doi.org/10.1016/j.jml.2006.08.003.

Criss, A. H. (2009). The distribution of subjectivememory strength: List strength and
response bias. Cognitive Psychology, 59, 297–319.
http://dx.doi.org/10.1016/j.cogpsych.2009.07.003.

Criss, A. H. (2010). Differentiation and response bias in episodic memory: Evidence
from reaction time distributions. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 36, 484–499. http://dx.doi.org/10.1037/a0018435.

Davis-Stober, C. P., & Brown, N. (2013). Evaluating decision maker ‘‘type’’ under
p-additive utility representations. Journal of Mathematical Psychology, 57,
320–328. http://dx.doi.org/10.1016/j.jmp.2013.08.002.

Dube, C., & Rotello, C.M. (2012). Binary ROCs in perception and recognitionmemory
are curved. Journal of Experimental Psychology: Learning, Memory, and Cognition,
38, 130–151. http://dx.doi.org/10.1037/a0024957.

Dube, C., Rotello, C., & Pazzaglia, A. (2013). The statistical accuracy and theoretical
status of discrete-state MPTmodels: Reply to Batchelder and Alexander (2013).
Psychological Bulletin, 139, 1213–1220. http://dx.doi.org/10.1037/a0034453.

Dube, C., Starns, J. J., Rotello, C. M., & Ratliff, R. (2012). Beyond ROC curvature:
Strength effects and response time data support continuous-evidence models
of recognition memory. Journal of Memory and Language, 67, 389–406.
http://dx.doi.org/10.1016/j.jml.2012.06.002.

Egan, J., Schulman, A. I., & Greenberg, G. Z. (1959). Operating characteristics
determined by binary decisions and by ratings. Journal of Acoustical Society of
America, 31, 768. http://dx.doi.org/10.1121/1.1907783.

Gillund, G., & Shiffrin, R.M. (1984). A retrievalmodel for both recognition and recall.
Psychological Review, 91, 1–67. http://dx.doi.org/10.1037/0033-295X.91.1.1.

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New
York: Wiley.

Healy, A. F., & Kubovy, M. (1981). Probability matching and the formation
of conservative decision rules in a numerical analog of signal detection.
Journal of Experimental Psychology: Human Learning and Memory, 7, 344–354.
http://dx.doi.org/10.1037/0278-7393.7.5.344.

Hsu, Y.-F., & Doble, C. W. (2015). A threshold theory account of psycho-
metric functions with response confidence under the balance condition.
British Journal of Mathematical and Statistical Psychology, 68, 158–177.
http://dx.doi.org/10.1111/bmsp.12040.

Kellen, D., & Klauer, K. C. (2014). Discrete-state and continuous models of
recognition memory: Testing core properties under minimal assumptions.
Journal of Experimental Psychology: Learning, Memory, and Cognition, 40,
1795–1804. http://dx.doi.org/10.1037/xlm0000016.

Kellen, D., & Klauer, K. C. (2015). Signal detection and threshold modeling of
confidence-rating ROCs: a critical test with minimal assumptions. Psychological
Review, 122, 542–557. http://dx.doi.org/10.1037/0278-7393.30.6.1147.

Kellen, D., & Klauer, K. C. (2016). Elementary signal detection and threshold theory.
In E.-J. Wagenmakers (Ed.), Stevens’ handbook of experimental psychology and
cognitive neuroscience. Vol. V (4th ed.). New York: John Wiley & Sons, Inc., (in
press).

Kellen, D., Klauer, K. C., & Bröder, A. (2013). Recognitionmemorymodels and binary-
response ROCs: A comparison by minimum description length. Psychonomic
Bulletin & Review, 20, 693–719. http://dx.doi.org/10.3758/s13423-013-0407-2.

Kinchla, R., Townsend, J., Vellott, J., & Atkinson, R. (1966). Influence of correlated
visual cues on auditory signal detection. Perception & Psychophysics, 1, 67–73.
http://dx.doi.org/10.3758/BF03207824.

Klauer, K. C., & Kellen, D. (2010). Toward a complete decision model of item and
source memory: A discrete-state approach. Psychonomic Bulletin & Review, 17,
465–478. http://dx.doi.org/10.3758/PBR.17.4.465.

Krantz, D. H. (1969). Threshold theories of signal detection. Psychological Review, 76,
308–324. http://dx.doi.org/10.1037/h0027238.

Larkin, W. D. (1965). Rating scales in detection experiments. Journal of Acoustical
Society of America, 37, 748–749.

Lindner, W. A. (1968). Recognition performance as a function of detection criterion
in a simultaneous detection-recognition task. The Journal of the Acoustical Society
of America, 44(1), 204–211. http://dx.doi.org/10.1121/1.1911056.

Luce, R. D. (1959). Individual choice behavior. New York: Wiley.
Luce, R. D. (1963). A threshold theory for simple detection experiments.

Psychological Review, 70, 61–79. http://dx.doi.org/10.1037/h0039723.
Luce, R. D. (1977). Thurstones’s discriminal processes fifty years later. Psychome-

trika, 42, 461–489. http://dx.doi.org/10.1007/bf02295975.
Luce, R. D. (1997). Several unresolved conceptual problems of mathematical

psychology. Journal of Mathematical Psychology, 41, 79–87.
http://dx.doi.org/10.1006/jmps.1997.1150.

Luce, R. D. (2000). Utility of gains and losses: measurement-theoretical and
experimental approaches. New York: Psychology Press.

Luce, R. D. (2010). Behavioral assumptions for a class of utility models:
a program of experiments. Journal of Risk and Uncertainty, 41, 19–37.
http://dx.doi.org/10.1007/s11166-010-9098-5.

http://dx.doi.org/10.1037/h0041428
http://refhub.elsevier.com/S0022-2496(16)00026-2/sbref2
http://dx.doi.org/10.1111/j.2044-8317.1965.tb00341.x
http://dx.doi.org/10.1037/a0033894
http://dx.doi.org/10.1037//0033-295X.101.1.172
http://dx.doi.org/10.1037//0278-7393.22.1.197
http://dx.doi.org/10.1037/a0037668
http://dx.doi.org/10.1080/09658211.2013.767348
http://dx.doi.org/10.1037/a0015279
http://dx.doi.org/10.1016/j.jmp.2013.07.002
http://dx.doi.org/10.1037/xlm0000077
http://dx.doi.org/10.1037/h0040633
http://dx.doi.org/10.1016/j.jml.2006.08.003
http://dx.doi.org/10.1016/j.cogpsych.2009.07.003
http://dx.doi.org/10.1037/a0018435
http://dx.doi.org/10.1016/j.jmp.2013.08.002
http://dx.doi.org/10.1037/a0024957
http://dx.doi.org/10.1037/a0034453
http://dx.doi.org/10.1016/j.jml.2012.06.002
http://dx.doi.org/10.1121/1.1907783
http://dx.doi.org/10.1037/0033-295X.91.1.1
http://refhub.elsevier.com/S0022-2496(16)00026-2/sbref23
http://dx.doi.org/10.1037/0278-7393.7.5.344
http://dx.doi.org/10.1111/bmsp.12040
http://dx.doi.org/10.1037/xlm0000016
http://dx.doi.org/10.1037/0278-7393.30.6.1147
http://refhub.elsevier.com/S0022-2496(16)00026-2/sbref28
http://dx.doi.org/10.3758/s13423-013-0407-2
http://dx.doi.org/10.3758/BF03207824
http://dx.doi.org/10.3758/PBR.17.4.465
http://dx.doi.org/10.1037/h0027238
http://refhub.elsevier.com/S0022-2496(16)00026-2/sbref33
http://dx.doi.org/10.1121/1.1911056
http://refhub.elsevier.com/S0022-2496(16)00026-2/sbref35
http://dx.doi.org/10.1037/h0039723
http://dx.doi.org/10.1007/bf02295975
http://dx.doi.org/10.1006/jmps.1997.1150
http://refhub.elsevier.com/S0022-2496(16)00026-2/sbref39
http://dx.doi.org/10.1007/s11166-010-9098-5


D. Kellen et al. / Journal of Mathematical Psychology 75 (2016) 86–95 95
Luce, R. D., & Green, D.M. (1974). Detection, discrimination, and recognition. In E. C.
Carterette, &M. P. Friedman (Eds.),Handbook of perception. Vol. II (pp. 299–342).
New York: Academic Press.

Malmberg, K. J. (2002). On the form of ROCs constructed from confidence
ratings. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28,
380–387. http://dx.doi.org/10.1037/0278-7393.28.2.380.

Malmberg, K. J. (2008). Recognition memory: a review of the critical findings
and an integrated theory for relating them. Cognitive Psychology, 57, 335–384.
http://dx.doi.org/10.1016/j.cogpsych.2008.02.004.

Mandler, G., Pearlstone, Z., & Koopmans, H. S. (1969). Effects of organization and
semantic similarity on recall and recognition. Journal of Verbal Learning and
Verbal Behavior , 8, 410–423. http://dx.doi.org/10.1016/S0022-5371(69)80134-
9.

Myung, I. J. (2000). The importance of complexity in model selection. Journal of
Mathematical Psychology, 44, 190–204.

Norman, D. A. (1964). Sensory thresholds, response biases, and the neural quantum
theory. Journal of Mathematical Psychology, 1, 88–120.
http://dx.doi.org/10.1016/0022-2496(64)90018-5.

Pazzaglia, A., Dube, C., & Rotello, C. (2013). A critical comparison of discrete-state
and continuous models of recognition memory: Implications for recognition
and beyond. Psychological Bulletin, 139, 1173–1203.
http://dx.doi.org/10.1037/a0033044.

Province, J. M., & Rouder, J. N. (2012). Evidence for discrete-state processing in
recognition memory. Proceedings of the National Academy of Sciences of the
United States of America, 109, 14357–14362.
http://dx.doi.org/10.1073/pnas.1103880109.

Raaijmakers, J. G. W., & Shiffrin, R. M. (2002). Models of memory. In H. Pashler, &
D. Medin (Eds.), Stevens’ handbook of experimental psychology. Vol. II (3rd ed.).
New York: John Wiley & Sons, Inc.
Rouder, J., & Morey, R. D. (2009). The nature of psychological thresholds.
Psychological Review, 116, 655–660. http://dx.doi.org/10.1037/a0016413.

Rouder, J.N., Province, J.M., Swagman, A.R., & Thiele, J.E. (2013). From ROC curves to
psychological theory. Manuscript submitted for publication.

Singmann, H., & Kellen, D. 2013. MPTinR: Analysis of Multinomial Processing Tree
models with R. Behavior Research Methods, 45, 560–575.

Steingrimsson, R. (2011). Evaluating a model of global psychophysical judg-
ments for brightness: II. Behavioral properties linking summations
and productions. Attention, Perception, & Psychophysics, 73, 872–885.
http://dx.doi.org/10.3758/s13414-010-0067-5.

Stevens, S. S., Morgan, C. T., & Volkmann, J. (1941). Theory of the neural quantum
in the discrimination of loudness and pitch. The American Journal of Psychology,
54, 315–335. http://dx.doi.org/10.2307/1417678.

Swets, J., Tanner, W. P., Jr., & Birdsall, T. G. (1961). Decision processes in
perception. Psychological Review, 68, 301–340. http://dx.doi.org/10.1037/0033-
295X.68.5.301.

Van Zandt, T., &Maldonado-Molina,M.M. (2004). Response reversals in recognition
memory. Journal of Experimental Psychology. Learning,Memory, and Cognition, 30,
1147–1166. http://dx.doi.org/10.1037/0278-7393.30.6.1147.

Wickelgren, W. A. (1968). Testing two-state theories with operating charac-
teristics and a posteriori probabilities. Psychological Bulletin, 69, 126–131.
http://dx.doi.org/10.1037/h0025264.

Wixted, J. T. (2007). Dual-process theory and signal-detection theory of recognition
memory. Psychological Review, 114, 152–176. http://dx.doi.org/10.1037/0033-
295X.114.1.152.

Yonelinas, A. P., & Parks, C. M. (2007). Receiver operating characteristics (ROCs)
in recognition memory: A review. Psychological Bulletin, 133, 800–832.
http://dx.doi.org/10.1037/0033-2909.133.5.800.

http://refhub.elsevier.com/S0022-2496(16)00026-2/sbref41
http://dx.doi.org/10.1037/0278-7393.28.2.380
http://dx.doi.org/10.1016/j.cogpsych.2008.02.004
http://dx.doi.org/10.1016/S0022-5371(69)80134-9
http://dx.doi.org/10.1016/S0022-5371(69)80134-9
http://dx.doi.org/10.1016/S0022-5371(69)80134-9
http://refhub.elsevier.com/S0022-2496(16)00026-2/sbref45
http://dx.doi.org/10.1016/0022-2496(64)90018-5
http://dx.doi.org/10.1037/a0033044
http://dx.doi.org/10.1073/pnas.1103880109
http://refhub.elsevier.com/S0022-2496(16)00026-2/sbref49
http://dx.doi.org/10.1037/a0016413
http://dx.doi.org/10.3758/s13414-010-0067-5
http://dx.doi.org/10.2307/1417678
http://dx.doi.org/10.1037/0033-295X.68.5.301
http://dx.doi.org/10.1037/0033-295X.68.5.301
http://dx.doi.org/10.1037/0033-295X.68.5.301
http://dx.doi.org/10.1037/0278-7393.30.6.1147
http://dx.doi.org/10.1037/h0025264
http://dx.doi.org/10.1037/0033-295X.114.1.152
http://dx.doi.org/10.1037/0033-295X.114.1.152
http://dx.doi.org/10.1037/0033-295X.114.1.152
http://dx.doi.org/10.1037/0033-2909.133.5.800

	The ignored alternative: An application of Luce's low-threshold model to recognition memory
	High- and low-threshold models
	2AFC ROC data

	Evaluating the LTM with recognition-memory data
	Old--new ROC data
	Ranking judgments

	Discussion
	Acknowledgment
	References


