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Dora Matzke6 · Jeffrey N. Rouder1 · Jennifer S. Trueblood7 · Corey N. White8 · Joachim Vandekerckhove1

© Society for Mathematical Psychology 2019

Abstract
In an attempt to increase the reliability of empirical findings, psychological scientists have recently proposed a number
of changes in the practice of experimental psychology. Most current reform efforts have focused on the analysis of
data and the reporting of findings for empirical studies. However, a large contingent of psychologists build models that
explain psychological processes and test psychological theories using formal psychological models. Some, but not all,
recommendations borne out of the broader reform movement bear upon the practice of behavioral or cognitive modeling.
In this article, we consider which aspects of the current reform movement are relevant to psychological modelers, and we
propose a number of techniques and practices aimed at making psychological modeling more transparent, trusted, and robust.
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“You never want a serious crisis to go to waste . . . This
crisis provides the opportunity for us to do things that
you could not before” (Rahm Emmanuel, 1998).

The field of psychology has recently questioned whether
its findings are as reliable as they need to be to build a
useful and cumulative body of knowledge. The growing
lack of trust is sometimes called a “crisis of confidence”
(Pashler and Wagenmakers 2012, p. 528). A retrospective by
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Spellman (2015) identified a set of five causes for this crisis.
A first rare but worrying culprit has been the manipulation
and fabrication of empirical data (Simonsohn 2013;
Wagenmakers 2012). A second more common problem has
been the failure of established empirical findings to replicate
in careful and systematic attempts (Alogna et al. 2014; Klein
et al. 2014; Shanks et al. 2013; Open Science Collaboration
2012). A third problem involves increasing recognition of
the inherent but undisclosed flexibility in data collection and
analysis, sometimes called “researcher degrees of freedom”
(Simmons et al. 2011). A closely related fourth problem is
the possibility of selective reporting and hypothesizing after
empirical results are known, sometimes called “HARKing”
(see Bones 2012; Kerr 1998; and Fig. 1). Finally, Spellman
(2015) noted the difficulties of obtaining other researchers’
data for reanalysis, verification, and conducting meta-
analyses (Vanpaemel et al. 2015; Wicherts et al. 2006).

In reaction to the crisis in confidence, there has been an
effort to identify and enforce good practices for analysis
and reporting of experimental data. The practice of pre-
specifying data collection and analysis plans, long required
in clinical trials, has been proposed in psychology to
limit both HARKing and undisclosed flexibility. This
practice has become collectively known in psychology as
preregistration (e.g., Matzke et al. 2015; Munafò et al. 2017;
Nosek et al. 2018; Wagenmakers et al. 2012). A new
publication format known as registered reports has been
adopted by more than 100 psychology journals as a way
to incorporate these ideas directly into the research and
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Fig. 1 A caricature of
questionable research practices,
conceived as fishing for research
results by the manipulation of
data (“fudging”) and selective
consideration of hypotheses
(“HARKing”). Artwork by
Viktor Beekman based on a
concept by Eric-Jan
Wagenmakers. Reproduced
under a CC-BY license. Source:
https://www.bayesianspectacles.
org/library/

publication pipeline1 (Chambers 2013; Chambers et al.
2015; Hardwicke and Ioannidis 2018). Psychologists have
also recognized the importance of replication as a tool
for verifying scientific claims (Open Science Collaboration
2012, 2015), and vigorously debated what role replication
plays in a healthy science (see Zwaan et al. 2018, and its
associated commentaries). In addition, psychologists have
pushed for open data, open code, and open materials to
allow for better verification and reanalysis of study results.
For example, the transparency and openness promotion
(TOP) guidelines (Miguel et al. 2014; Nosek et al. 2015) is a
collection of eight key open science practices structured into
three levels of increasing stringency. The TOP guidelines
have been implemented by more than 5,000 scientific
organizations and more than 1,000 journals spanning many
scientific disciplines.

The Crisis of Confidence Reaches Beyond
Experimental Psychology

The focus of the crisis of confidence in psychology has
been in experimental psychology, involving the analysis of
empirical data using standard statistical methods. Often,
however, psychology seeks to understand its data and
theories using models (Farrell and Lewandowsky 2018;
Sun 2008). Modeling and model-based inference is closely
related to the standard statistical data analysis routinely used

1Note that registered reports involve more than preregistration: They
also involve a journal’s guarantee that a paper will be published
regardless of how the data turn out.

in experimental psychology. While familiar data analysis
methods like regression and analysis of variance are often
thought of as procedures, they can also be thought of as
statistical models used to perform inference.

From this perspective, the only difference between sta-
tistical analysis and psychological modeling lies in the
emphasis that psychological models place on substantive
interpretation. The data-generating mechanisms in a psy-
chological model can usually be interpreted in terms of
psychological processes, such as storing an item in memory,
attending to a stimulus feature, or making a decision. The
parameters in a psychological model can usually be inter-
preted as unobservable psychological constructs governing
the processes, such as the capacity of working memory, the
level of selective attention, or the bias affecting a decision.

Such “psychology-descriptive” models can provide sub-
stantive insights, unlike some machine-learning and statisti-
cal models that focus exclusively on prediction. They can
broaden the types of experimental data that can be analyzed,
including small data sets and non-standard experimental
designs. Finally, they can provide stronger tests of competing
psychological theories, because the models correspond
more closely to the theories and formalize more of the
assumptions made by the theories (Vanpaemel 2010).

The close relationship between standard data analysis
and model-based analysis suggests that the critical re-
examination of data analysis methods in psychology also
has ramifications for psychological modeling. Accordingly,
the goal of this article is to consider how the lessons learned
from the crisis in experimental psychology could improve
modeling practices in psychology and cognitive science.
In our discussion, we divide good modeling practices into
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three general parts: those that apply before data have been
collected, those that apply after data have been collected,
and a set of general good practices throughout model-based
research. We consider each of these parts in turn, illustrating
the general issues with specific examples drawn from
various sub-fields of psychological modeling. We conclude
with a brief discussion of techniques to make psychological
modeling more transparent, trusted, and robust.

Good Practices Before Data are Collected

PreregisteringModels, the Players in the Game

Preregistering models and their predictions can be a useful
scientific practice. One way to think of the practical benefits
of preregistrations is that it can help a researcher in much
the same way that preregistering a dissertation research plan
can help a graduate student. It provides an explicit and
detailed plan of action at the beginning of the enterprise.
Preregistration is not intended as a constraint on what can
happen, and will generally not anticipate everything that
could happen. The preregistration does, however, provide
a clear statement of the motivating goals for the research,
and the intended ways in which those goals will be
met.

Preregistration is especially important in a confirmatory
research setting, in which data are used to evaluate the
adequacy of a model or to compare multiple models.
As part of such a preregistration, it is important to
be clear about what are core versus ancillary modeling
assumptions, and how these relate to the research questions.
Core assumptions are those that motivated the empirical
test and will usually correspond to the major theoretical
questions being addressed by the research. Ancillary
assumptions involve various possible choices to non-core
parts of the model. An example of this distinction is
provided by the “Expected Utility Theory” case-study
box.

Ideally, a preregistered model could take the form of the
precise predictions that are made by the model. Bayesian
methods, by requiring both a likelihood and a prior,
automatically make comprehensive predictions about data,
but it is usually possible to preregister some predictions
using non-Bayesian methods as well. In addition, in most
research situations involving model comparison, there are
many possible models that could be included. As for the
methods of analysis, if model comparison is to be used, it
is important to preregister the models that will be compared
to one another. This prevents “changing the players in the
game” once data have been seen. That is, it prevents one
from introducing a model that performs poorly on the data,
to give the impression that the originally proposed set of

models fare relatively well, or from introducing a model that
was directly inspired by the data, which will perform well on
the data sample but may generalize poorly due to overfitting.

It is important to emphasize that preregistration is not
necessarily needed at all stages of the modeling process. A
large part of developing psychological models is exploratory
in nature. It may be more useful, in many cases, to engage in
a practice we call postregistration. Postregistration involves
keeping a comprehensive log of the modeling process that
acts as an “activity log” documenting the process of model
building and checking. This concept is discussed in the
Section “Exploratory Analyses and Postregistration” below.

Example 1 (Expected Utility Theory) As a concrete
example of the difference between core and non-core
assumptions, consider an example from psychological
models of choice based on expected utility theory. The
famous Allais (1953, 1979) paradox presents two problems
involving choices between a “safe” gamble and a “risky”
gamble. The problems are designed such that, according
to expected utility theory, a decision-maker should either
choose the safe option for both problems or the risky option
for both problems. A core assumption of expected utility
theory is that decision-makers have a stable preference
state for the safe or risky option that applies to both
gambles. This leads to the prediction of the theory
that a mixed response—choosing the safe option in one
problem and the risky option in the other problem—
cannot happen at the individual level. Observed behavioral
data typically has at least some violations of this strict
prediction, which is attributed to some form of error in
the individuals’ decision-making processes (Birnbaum and
Quispe-Torreblanca 2018). Assumptions about errors are
good examples of ancillary assumptions. They are also a
good example of the level of modeling detail typically
needed to make complete predictions. Specifying how likely
it is that errors will be made, and how frequent those
errors could be, transforms the modeling predictions from
a qualitative one of “the theory predicts this will not
happen” to specific predictions about how many people will
produce each of the possible types of behavioral patterns
in an experiment. In this context, preregistration would be
appropriate to test whether or not individuals show safe and
risky options. A subsequent exploratory modeling exercise
could be to develop a mechanism that describes the errors
and when they occur.

Preregistering Evaluation Criteria, the Rules
of the Game

There are usually many ways in which we can evaluate
a model against data. All of the following metrics are
used regularly to evaluate models: p values, correlation
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coefficients, variance explained measures, sum of squared
error, mean absolute deviation, proportion of agreement,
maximum likelihood, normalized maximum likelihood,
information criteria (AIC, BIC, DIC, WAIC), and Bayes
factors (Shiffrin et al. 2008). Many of these measures are
similar to one another or are exactly equivalent in special
cases. In other cases, these metrics may give different and
opposite results for a key research question for exactly the
same models and data.

An illustrative example is given in Fig. 2. Both panels
in that figure display an artificial data set with ten
conditions. Each condition is characterized by its sample
mean and sample standard deviation on the vertical axis.
The horizontal axis depicts the predictions made by two
fictional models, so that any deviation from the diagonal
indicates the degree of model misfit. Various summaries
of the goodness-of-fit are also listed for each model. In
terms of the product-moment correlation (r) model 2, in
the right panel, is preferred. In terms of the root mean
square error measure (RMSE) model 1, in the left panel,
is preferred. The models are very close in mean absolute
deviation (MAD) measures. In terms of the log-likelihood
model 2 is preferred. Other metrics require an account of the
complexity of the models. For the purposes of our example,
assume that model 1 has one parameter and model 2 has five
parameters. Using this information, the AIC and BIC both
prefer model 1. The difference based on the BIC, however,
is larger, which may lead to stronger claims (Wagenmakers
and Farrell 2004), which metric to choose in practical

applications is a challenging statistical and methodological
question that remains an active area of debate and research
throughout the empirical sciences and statistics (Myung
et al. 2000; Navarro in press; Shiffrin et al. 2008).

The purpose of the example in Fig. 2 is to illustrate how
even in very common situations different reasonable and
widely used metrics can suggest conflicting conclusions.
This leads us to our recommendation that researchers
preregister the methods of evaluation that will be used.
Such preregistration prevents “changing the rules of the
game”—whether intentionally or not—once data have
been seen. A good preregistration should also provide an
argument for the suitability of the chosen metric in terms of
the relevant statistical and methodological considerations.
Preregistration notwithstanding, once the data are collected,
it remains important to evaluate whether any assumptions
of the analyses or model comparison tools are violated.
Preregistration is no substitute for good judgment and
care must be taken not to fixate on the results of one
model comparison metric for no other reason than that it
was preregistered. Changing the model comparison metric
after the data are seen might be advisable if it turns out
that the data unexpectedly violate some assumption of the
proposed analysis and selection criterion. For example,
if a researcher who preregistered an analysis using a
linear model and AIC discovers that their data exhibit
large interindividual differences, it would be defensible
for them to switch to an hierarchical model and Bayes
factor.

Fig. 2 Example of different results provided by different metrics for
assessing the adequacy of models. The two panels show the goodness-
of-fit of two models to the same data. Each panel lists the adequacy of
the model as measured by the product-moment correlation (r), the root

mean square error (RMSE), the mean absolute deviation (MAD), the
log-likelihood (LL), the Akaike information criterion (AIC), and the
Bayesian information criterion (BIC)
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RegisteredModeling Reports

The advantage, especially in confirmatory research settings,
of preregistering both models and their method of analysis,
suggests the desirability of making these declarations in
a systematic and routine way. Accordingly, we propose
a new article format for modelers called Registered
Modeling Reports, analogous to registered reports for
experimental studies (Chambers et al. 2015; Hardwicke
and Ioannidis 2018). In a Registered Modeling Report,
researchers pre-specify models, data collection mechanisms
(whether experimental or observational), and analyses prior
to data collection; then, they write up the Introduction
and Methods sections—and, if possible and relevant, the
computer code to be used for model and data analysis—
of an article for a “Stage 1” submission. The role of peer
review then is to assess whether these specifications are
principled and sufficient, and whether the study design
and planned analyses are of the desired quality. A report
that meets these criteria can be provisionally accepted for
publication, contingent on the researchers following through
with the registered model and methodology. After data
collection, the authors complete the manuscript with a
“Preregistered Results” section, an optional “Exploratory
Analysis” section, and a “Discussion” section.

We propose the Registered Modeling Report format in
order to insert the ideas of preregistration and transparency
of modeling practices directly into the publication process.
This potentially has a number of advantages. Most impor-
tantly, Registered Modeling Reports may help improve the
research itself, by allowing reviewers to provide their exper-
tise on experimental design and analysis before resources
are invested in the collection of data. Registered Modeling
Reports may also help streamline the review process by pre-
venting reviewers arguing for additional models or analyses
once the data have been collected.

While we think preregistration and Registered Modeling
Reports are important new ideas in model-based inference,
the limits of their role should be understood. First, it is clear
that not every modeling study is suited to preregistration
or Registered Modeling Reports. Successful cognitive
modeling almost always requires fine-grained iterative
model development, and this process is not well-matched to
a single preregistration or Registered Modeling Report. The
iterative process of model development and evaluation may
well be better documented during the research progress,
and disseminated as part of postregistration. Secondly,
the preregistration of a model and the way it will be
used may not survive contact with data. Violations of
protocol should be documented, and deviating from one’s
preregistration plans should be permitted. Preregistration
should not prevent learning from the data at hand, and it
does not prevent carrying out valuable exploratory analysis.

What Does Not Carry over

On the other hand, some of the recommendations that have
followed the crisis of confidence do not carry over to
the standard practices of cognitive modelers. For example,
unless a modeling project depends critically on a null
hypothesis test and there is only one opportunity for data
to be collected, a priori power analysis does not serve a
necessary role. Similarly, since model construction does not
necessarily rely on the availability of large data sets, we
do not believe rules of thumb for sample sizes are useful
considerations, especially if applied post hoc.

Good Practices after Data are Collected

Utilities in Model Evaluation

As empirical fields collect more phenomena, they some-
times develop checklists or benchmarks of qualitative prop-
erties that a good model should have. For example, Oberauer
et al. (2018) present a set of phenomenological prop-
erties relevant to working memory research, and Epper
and Fehr-Duda (2018) present a set of seven regularities
involving risk taking and time discounting behavior. The
“Context Effects in Decision-making” case-study box pro-
vides another concrete example of a checklist. These sorts
of checklists—that characterize models in terms of dis-
crete phenomena that are either present or absent, with no
strong statements about their magnitude—encourage a fal-
sificationist (Popper 1959) perspective on model evaluation.
While this may be appropriate, it is easy for checklists to
miss or mischaracterize important aspects of empirical phe-
nomena, and so provide incomplete or inappropriate bench-
marks. For example, a checklist may neglect the role of
individual differences or ignore the joint prediction of other
relevant behavioral data. Hence, for such multidimensional
data, it is appropriate to confirm the joint occurrence of the
phenomena and to consider their sensitivity to individual
differences in the theory-building stage.

A checklist of observed phenomena may also set up
inappropriate expectations for future model building. If the
evidence for some phenomena on a list is in fact weak, but
models are constructed with extra complexity to account
for those phenomena all the same, the model is essentially
overfit, meaning that it is overly attuned to the specific
features of the previous data sets and will hence suffer in
generalization tests. A conventional method of safeguarding
against overfitting would be to use a model comparison
metric that balances the quantitative fit of a model against
the complexity of the model. However, it is less clear how to
compute quantitative fit for a checklist of phenomena (but
see Pitt et al. 2006).
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Example 2 (Context Effects in Decision-Making)
Decades of research have been devoted to understanding
the cognitive processes that give rise to context-sensitive
behavior when people make decisions between multiple
alternatives described by multiple attributes. The focus of
this work has been on understanding three classic context
effects: the attraction (Huber et al. 1982), compromise
(Simonson 1989), and similarity effects (Tversky 1972).
These effects describe how preferences between two alter-
natives can change with the introduction of a new third
alternative, and have been shown to occur in adults, chil-
dren, monkeys, honeybees, hummingbirds, and even slime
molds (Latty and Beekman 2010). The effects are theo-
retically important because they challenge classical utility
models of decision-making (Luce 1959) by showing that
the relative preference for two options often depends on the
utility of another “decoy” option. There are at least a dozen
different computational models of these effects, with model
evaluation focused on exploring the range of parameter
values that can qualitatively produce the three effects. Typi-
cally, the modeling goal is to find a single set of parameters
that can account for all three effects (e.g., Roe et al. 2001;
Usher and McClelland 2004). However, the three effects
are too fragile and subtle to serve as simple mandated
checklists in this way. Very few participants produce all
three effects within a single experiment, even though most
people show the effects in isolation (Trueblood et al. 2015).
There are also large individual differences in the strength
and co-occurrence of the effects (Liew et al. 2016). Thus,
simply relying on a checklist of effects misses important
aspects of the psychological phenomena being explored,
and mischaracterizes the behavior for which an explanation
is sought. A better approach is to evaluate detailed cogni-
tive models of the decision processes involved, testing the
accuracy of their predictions about the individual decisions
that individual people make on these tasks (Evans et al.
2018; Turner et al. 2017).

Another standard modeling practice is to summarize the
ability of a model to capture patterns in the data through
an omnibus measure of goodness-of-fit, such as those
considered in Fig. 2. A limitation of such an approach is
that a single quantity may fail to capture the full richness of
information that the data provide for evaluating a model or
the omnibus measure may be led astray by small blips in the
data and uninteresting violations of ancillary assumptions.

One potential way to overcome the limitations of
qualitative checklists and overly sensitive omnibus fit
measures is to consider them as two endpoints on a
continuum of utilities (i.e., cost functions) for “scoring”
a model against data. Checklists operate at a coarse
resolution, measuring utility in terms of a few features,
while fit gives consideration to every data point. Between

these extremes lie utility functions that emphasize key
qualitative points of comparison between models and
data, but continue to consider all of the data in a fine-
grained way. The “Absolute Identification” case-study box
gives a concrete example from psychophysics of balancing
qualitative and quantitative agreement between models and
data.

Example 3 (Absolute Identification) Despite its apparent
simplicity, the task of attaching labels to stimuli varying
on a single dimension (e.g., tones varying in pitch) reveals
a number of fundamental limits in human information
processing. For example, stimuli closer to the extremes of
the range of stimuli presented are more accurately labeled
than those in the middle. This well-replicated result, now
called the bow effect, has become a benchmark finding
that most researchers would agree any model of absolute
identification must capture (Murdock 1960). Similarly,
models are expected to capture the relatively complex, but
reliable, observed pattern of sequential effects typically
observed in absolute identification studies. People show an
assimilation effect which attracts their response towards the
stimulus presented on the previous trial (Garner 1953), but
a weaker contrast effect that repels them from previously
presented stimuli (Holland and Lockhead 1968). Such
benchmark findings have been used to evaluate a number of
psychological models (e.g., Brown et al. 2008; Stewart et al.
2005). Stewart et al. (2005) take stock of the benchmark
effects observed within the absolute identification literature,
asking whether different models can produce the same
qualitative patterns as observed in data. Such an approach
can be very useful, but they (and most others) also evaluate
the quantitative agreement between the observed data and
the predictions of models. Once the required qualitative
properties have been established, quantitative fit remains
important because of the additional challenge it poses to
models, especially when capturing data at the level of
individual participants.

The more widespread use of utility functions has the
potential to strike an appealing balance between giving
weight to qualitatively important data patterns, while still
measuring overall quantitative agreement. Utilities to be
used in confirmatory model evaluation become part of the
“rules of the game” and as such should be determined—and
preregistered—before the analysis is performed.

BookendModels

Model comparison is inherently relative, and there is no
way to measure absolute adequacy. For an example of the
dilemmas this can cause, consider the case in which two
models are proposed for a complex data set. Suppose that
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both models clearly fail in important ways, but it is still the
case that one model decisively outperforms the other. One
reasonable perspective in this situation is that “the second
model is better than the first, but both are terrible, so what do
we learn from the comparison?” An alternative reasonable
perspective is that “the fact that one model is better means
some additional insight might have been gained, and that
can aid future development.” At a minimum, the worse
performing model can now be rejected even though a good
alternative remains undiscovered.

One practical way to address this dilemma is to include,
when feasible, additional base-rate and catch-all models as
“bookends.” This involves augmenting the set of models
under consideration to include models that are much more
parsimonious, and some that are much more complicated
than the substantive models of interest. If a model of
interest outperforms the bookend models, this suggests
that its success in accounting for the data does not come
entirely from its parsimony or goodness-of-fit alone, but
from striking a suitable balance. In this sense, comparison
to bookend models provides a practical proxy for the
assessment of absolute model adequacy. The “Memory
Retention Functions” case-study box gives a concrete
example of this use of bookend models.

Example 4 (Memory Retention Functions) Models of
memory retention characterize the change in probability
of recall of an item or episode from memory as a
function of time. Many functions, including various power
functions and exponential decay functions, have been
proposed to model this relationship (e.g., Rubin et al. 1999).
The bookend approach would add to this set of serious
theoretical competitors something like a null model that
assumed memory for items was constant with respect to
time, and a saturated model that allowed a free parameter
for the probability of recall at every measured time point.
The null model is presumably far too restrictive, and will
under-fit the data. The saturated model is presumably far too
complex, and will overfit the data. Thus, for a theoretical
model like a power or exponential function to be a serious
contender, it should outperform both of these bookends.

Prediction and Generalization

Beyond descriptive adequacy, prediction and generalization
are important additional approaches for model evaluation.
By prediction, we mean tests that measure the success of a
model in accounting for unobserved data from the same
task. By generalization, we mean tests that measure the
success of a model in accounting for unobserved data from a
different but related task. This difference between prediction
and generalization is emphasized by Busemeyer and Wang
(2000), who argue for the merits of generalization tests.

Successful prediction and generalization show a model to be
robust, in the sense that the model is not over-emphasizing
any idiosyncratic features of a particular set of data.

Some practices for prediction tests are well established,
like cross-validation and accumulative prediction error
(Shiffrin et al. 2008; Wagenmakers et al. 2006). There
are fewer examples of generalization tests in cognitive
modeling (but see Criss et al. 2011, Guan et al. 2015, and
Kılıč et al. 2017, for some recent examples). The “Serial
Position Effects in Free Recall” case-study box provides one
concrete example. Generalization tests should become more
widespread as psychological modeling aims to demonstrate
its robustness. The ability to make accurate predictions
about what will happen in new and different psychological
circumstances is a compelling way to demonstrate the
explanatory power and range of applicability of a theory.

Example 5 (Serial Position Effects in Free Recall) The
serial position curve in free recall is one of the most robust
findings in the study of memory. Items presented near the
beginning and end of studied lists tend to be recalled better
than items in the middle of the list, when there is no
requirement to recall the items in order. The quantitative
details of this qualitative regularity, however, depend on
details of the task, including how many items are studied
and the time interval between their presentation (Murdock
1962). Shiffrin et al. (2008) present a case study of how
a model of free recall can be evaluated in terms of its
ability to generalize across these conditions. They focus on
a hierarchical extension of the SIMPLE model (Brown et al.
2007), using data from six experimental conditions to infer
model parameters. The extension enabled predictions about
the appropriate parameterization of the model in three extra
conditions involving set sizes and presentation intervals that
were different from those used to make the inferences.
These predicted parameters, in turn, were used to generate
the serial position curves that the model predicts. In effect,
the extension served to broaden the model’s account of
free recall from the observed experimental tasks to new
experimental tasks, so that evaluation against data from the
new tasks would provide a strong test of the model.

Other approaches related to prediction and generalization
are emerging in contexts like machine-learning competi-
tions. An early example was the Netflix competition (Bell
et al. 2010), which provided data on the ratings viewers gave
to movies they watched and tested the ability of algorithms
to predict the ratings for withheld data. The final million-
dollar prize was awarded for the first algorithm able to make
a 10% improvement over Netflix’s own recommendation
algorithm at the time. For the most part, the algorithms sub-
mitted to the competition were developed using statistical
and machine-learning methods. We believe there should be
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a role for cognitive models in this competitive context. In
the case of the Netflix competition, teams predicted human
judgments of esthetic stimuli—a quintessentially behavioral
question common in the cognitive sciences. Contemporary
data science competitions might benefit from, as compo-
nents of a good entry, some measure of psychological mod-
eling. For example, recent Kaggle competitions2 include the
“Dog Breed Identification Challenge” (determine the breed
of a dog from an image), the “Toxic Comment Classification
Challenge” (identify and classify inappropriate comments
in an online setting), and the “Store Item Demand Fore-
casting Challenge” (predict three months of item sales at
different stores). These Kaggle competitions seem likely to
benefit from psychological models of vision, language, and
decision-making, respectively. There are also contemporary
competitions, such as the Choice Prediction Competition,3

that are more explicitly focused on psychological theories
and cognitive modeling challenges. A key element of all of
these competitions is that the requirement of genuine pre-
diction has to be carefully implemented in the assessment of
competing models.

Exploratory Analyses and Postregistration

However, a model is evaluated, the evaluation should ideally
be augmented with exploratory analyses. Perhaps, the
most common exploratory analyses involves the discussion
of model misspecification. All models are misspecified
and modelers often work through a sequence of models
before arriving at the one ultimately presented—trying this
functional form and that, allowing for individual differences
or trial-to-trial effects, adding auxiliary assumptions for
a new study design, and taking what was an auxiliary
assumption and building it into a core assumption.
Understanding the reasons for steps taken and the nature of
the residual misspecification provides crucial information
for guiding future model development that often goes
unreported. In other words, knowing what did not work in
model development and what still does not work in the final
model should be transparently reported to the field.

Model development is a creative activity that often
proceeds in this incremental and exploratory fashion. A
model is forged from data through a process of abductive
reasoning, and it undergoes multiple cycles of empirical
testing and adjustment over time.

In exploratory model development, we believe there is
a useful expanded role for what we call “postregistra-
tion” documentation. Postregistration is part of an ongoing
research effort and involves keeping an “activity log” docu-
menting every model alteration tried during the study. This

2https://www.kaggle.com/competitions
3https://cpc-18.com/

type of activity log is essentially a modeling lab notebook,
not unlike a traditional lab notebook (Noble 2009), which
is updated incrementally as the exploratory modeling pro-
ceeds. Modeling notebooks can be created using existing
software tools such as Jupyter or Rmarkdown, and they
can be made public at the time of publication or even as
the research is being done. In a preregistered confirmatory
setting, postregistration could focus on non-core modeling
results, possibly in the published article, but possibly only in
supplementary material. In either case, postregistration pro-
vides a mechanism for avoiding the modeling file-drawer
effect, in which attempts at model development that fail are
never made public (Rosenthal 1979). The overarching aim
of these additional reporting considerations is to inform the
field and to enhance the understanding of the model.

Good Practices Throughout Psychological
Modeling

Modelers should always endeavor to make their models
available (Baumgaertner et al. 2018). The motivating
goal of ensuring availability is to preserve the rights of
others to reach independent conclusions about model-
based inferences. A minimum standard, then, is to provide
accessible modeling details that allow a competent person
in the field to reproduce the results. This is likely to include
mathematical and statistical description, an algorithm or
pseudo-code, user documentation, and so on. Providing
these details in a sufficiently precise form makes a model
available, and means it is likely to be used and understood
more broadly than by a specific researcher or a single lab.

MakingModeling Robust

Gould (1996) pointed out that mistakes that favor a
researcher’s preferred conclusions tend to go uninvesti-
gated, and so tend to remain (Rouder et al. in press). A
consequence of this “psychology of errors” is that mistakes
in model implementation tend to be biased in favor of the
model—that is, the results are not robust to who is perform-
ing the analysis. In computer science, there are established
“robust coding” techniques that can help researchers address
their unconscious biases, including independent implemen-
tation and test-driven development (Beck 2003). Neverthe-
less, making modeling robust to error is a challenging task.
It is a special case of the more general challenge of estab-
lishing the robustness of model-based findings, we discuss
one established modeling practice for increasing robustness
in modeling, as well as two more recent ideas.

One established practice involves parameter recovery
studies. These studies test the correctness of the computa-
tional implementation of a model through recovery studies
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that fit a model to data simulated from that model (Cook
et al. 2006; Heathcote et al. 2015). The usual assumption
is that it is desirable for a model to infer the parame-
ter values that are known to have generated the simulated
data. Model recovery studies can provide a way to under-
stand the properties of a model. In particular, they can
help diagnose issues like (weak) identifiability with respect
to the type and amount of information likely to be avail-
able. These diagnoses in turn can help guide the decisions
involved in experimental design. An extreme form of using
models to guide experimental design involves the growing
area of “optimal experimental design,” in which the pre-
dictions made by competing models are used to choose the
conditions presented in an experiment or even the stimuli
presented on a trial-by-trial basis (Cavagnaro et al. 2013;
Zhang and Lee 2010).

A more recent idea for combating errors involves the
use of blinding in modeling (Dutilh et al. 2017; MacCoun
and Perlmutter 2017). The core requirement of blinded
modeling is that the modeler is provided with most of
the data, but that the data are scrambled or delabeled
to make it impossible to determine if the outcome is
desirable or undesirable with respect to a theory or model.
Blinded modeling alleviates the psychology-of-errors bias,
and thus provides a mechanism to increase confidence in
the usefulness of model-based inference. In particular, it
provides a strong test of selective influence (Voss et al.
2004). “The Worst Performance Rule” case-study box
provides an example of using blinding.

Example 6 (The Worst Performance Rule) People with
higher working memory capacity tend to respond relatively
more quickly in elementary perceptual tasks, such as
deciding whether a stimulus array contains more white
or black dots (Jensen 2006). According to the worst
performance rule, the worst performance in these simple
tasks is more predictive of high-order cognitive ability
than best performance (Baumeister and Kellas 1968).
The evidence for this rule is that higher response time
quantiles (i.e., slower responses) correlate more strongly
with working memory capacity than lower response time
quantiles (e.g., Unsworth et al. 2010). Ratcliff et al.
(2008) have argued that the worst performance rule can
be explained by a drift diffusion model of the time
course of making simple decisions. In particular, the
diffusion model account of the worst performance rule
posits that the same general processing speed—the “drift
rate” parameter—facilitates performance in both simple
perceptual tasks and complex cognitive tasks. Dutilh et al.
(2017) tested these modeling claims using a confirmatory
yet flexible two-stage modeling strategy. In the first stage,
the modeler was provided with the choice response times
and a randomly shuffled version of the working memory

measurements. In this way, the critical correlation between
person-specific working memory scores and person-specific
choice response times was withheld from the modeler. After
all of the modeling decisions were made, such as outlier
exclusion and transformations, the analysis code was made
public on the Open Science Framework. In the second
stage, the working memory scores were unshuffled, and
the analysis script was applied to the data to evaluate the
preregistered hypotheses. The authors concluded that the
results provided evidence against the worst performance
rule. By blinding the modeler to the mapping between the
key variables, in the form of the drift rate parameters and
working memory scores, the two-stage analysis strategy
allowed for flexibility in modeling while ensuring that the
modeling decisions were not driven by expectations about
the outcomes.

A model-based way of guarding against errors involves
testing the robustness of results to small variations
in the model definition. Most modeling applications
in psychology involve using only one model to make
inferences from data. It is the case, however, that the most
important conclusions should be robust to the non-core
details of the model. In the same way that we test the
sensitivity of our conclusions to irrelevant variations in the
priors, we can test their sensitivity to irrelevant variations in
the likelihood (Farrell and Lewandowsky 2018; Lee 2018).
This practice is sometimes called likelihood profiling. The
“Predator Avoidance and Courtship in Butterflies” case-
study box provides an example in which both priors and
likelihoods are tested for robustness.

Example 7 (Predator Avoidance and Courtship in
Butterflies) In Finkbeiner et al. (2014), model approach-
and-avoidance behavior (in predatory situations) and
courtship behavior (in mating situations) in butterflies, they
use Bayesian methods to implement models and evaluate
them against the behavioral data. As part of testing the
robustness of the modeling conclusions, they examined
a set of variations on the original model, particularly
with respect to the modeling assumption made about
individual differences between butterflies. Different prior
distributions on the level of variability are systematically
tested, together with different assumptions about the shape
of the distribution that characterizes individual differences.
The observation that the important modeling results are
robust to these changes suggests that they come from the
data and core theoretical commitments of the model, rather
than from the more arbitrary ancillary assumptions.

A more extreme version of this robust modeling approach
uses multiple different models that formalize the same
psychological theory (Dutilh et al. 2018). Analogously
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to the “many analysts” approach in data analysis, the
goal of this approach is to test the variation in findings
arising from different researchers tackling the same
problem using different reasonable methods (Silberzahn
et al. 2018). If different models converge on the same
findings, it suggests the models capture the theory and
the inferences are robust. If the results do not agree, rich
diagnostic information is provided to investigate the models
and psychological phenomena involved. We believe this
crowd-sourced approach to evaluating the robustness of
findings is an important emerging capability, facilitated
by the increasing speed and ease of distributed scientific
interaction.

More Complete Modeling

Exploratory and confirmatory methods can and should be
used at the same time, for the same research question, and
even for the same model and data. The exploratory part
of a confirmatory study allows the data to inspire further
model development. The exploratory evidence provided by
current data can be measured for any model, including one
provided by the data. Results of exploratory analysis then
inspire future confirmatory tests using independent data. It
is critical, however, that exploratory evidence should not be
misinterpreted as confirmatory evidence if the model was
not anticipated before the data were seen.

We believe that one useful way to think of the distinction
is in Bayesian terms. The canonical Bayesian approach to
model selection is based on the Bayes factor, which is
a ratio expressing how much evidence the data provide
for one model over another (Kass and Raftery 1995; Lee
and Wagenmakers 2013, Chapter 7; Vandekerckhove et al.
2015). The Bayes factor can be thought of as the change
from prior model odds to posterior model odds, as in the
following equation:

posterior odds
︷ ︸︸ ︷

p (Mm | y)

p
(

Mg | y
) =

Bayes factor
︷ ︸︸ ︷

p (y | Mm)

p
(

y | Mg
) ×

prior odds
︷ ︸︸ ︷

p (Mm)

p
(

Mg
) . (1)

In a confirmatory research setting, claims are sought about
the relative probability of models, based on the data. These
are claims about posterior odds, and thus require both prior
odds and the Bayes factor measure of evidence. Thus,
following the logic of Eq. 1, it is critical that the prior odds
be declared (i.e., preregistered) before the critical data are
seen. Alternatively, one might conduct a sensitivity analysis
examining the range of prior odds for which the data lead
to high posterior odds, thereby giving a lower bound on the
amount of prior skepticism that would be required to negate
the evidence in the data.

In an exploratory research setting, however, models are
often inspired by the collected data. In this case, it is

difficult to make claims about the prior probabilities of
models. It does remain reasonable, however, to measure the
evidence the current data provide for the newly developed
model, relative to other established models. This is what is
measured by the Bayes factor, and it is validly calculated for
any model with respect to any data.

From this perspective, what sets apart the exploratory
settings is the need for extra care in expressing the
knowledge claims. It is logical to say “these data are this
many more times likely to arise under this model than that
model.” It is not logical in the exploratory setting to say
“this model is this many times more likely than that model,
based on the data.” The former statement is appropriately
cautious: it expresses only the strength of evidence and
does not involve prior probabilities on the models. The
latter statement is inappropriately bold: it expresses strength
of belief and would have required prespecified priors on
the models. After all, if a model was only inspired by
examination of the data, it seems likely that its (implicit)
prior probability was not high, and so the (implicit) posterior
probability of the model also is not high. In the absence of
prior probabilities, exploratory model development should
restrict knowledge claims to those consistent with the Bayes
factor interpretation of evidence.

Solution-OrientedModeling

Ultimately, the test of the usefulness of a theory or model is
whether it works in practical applications, and people have
confidence in models that can be demonstrated to work.
Applications of established models will often combine
exploratory and confirmatory approaches. Verifying that the
data in the domain are well captured by the model provides
a test of model robustness and generalizability. Forcing a
model to tackle real-world problems encourages solution-
oriented science that may inspire future model development
and evaluation (Watts 2017).

In this vein, an important class of applied models come
in the form of measurement models. The goal of these
models is not necessarily to provide detailed accounts
of cognitive phenomena but to provide a useful “close
enough” model that can infer context-relevant features of
a person, stimulus, task, or some combination of all of
these (Marsh et al. 2014). Measurement models have been
historically important as the underpinning of the field of
psychometrics and psychological assessment, and are of
growing importance with real-world applications in the
emerging field of cognitive data science. The “Cognitive
Psychometric Models” case-study box provides an example
of this sort of applied measurement modeling.

Example 8 (Cognitive Psychometric Models) A recent
advance in the development of measurement models
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is the practice of cognitive psychometrics, in which
generic models of cognitive processing are applied in a
measurement context (Batchelder 2010). In one of the
earliest such projects, Gerrein and Chechile (1977) used a
model of a working memory task to study the dynamics
of alcohol-induced amnesia. The model was a multinomial
processing tree, which is essentially a decision tree that
the participant in a task is assumed to traverse in order
to indicate a response. The model consisted only of a few
chained probability statements and was not intended to test
one or another hypothesis directly. Instead, it served mainly
to restate the observed data in terms of process parameters
rather than counts. The conclusions of interest—that alcohol
intoxication impairs not only storage but also retrieval in
working memory—were drawn based on patterns of change
of these parameters across participant groups.

Conclusion

Psychology’s crisis of confidence provides a challenge
to the broader field, but it also provides an opportunity
to improve psychological modeling in particular. In this
article, we have attempted to identify a number of these
opportunities and highlighted emerging modeling practices
and useful new ideas for psychological modeling. In
particular, we have tried to highlight four key ideas that we
offer as take-home recommendations.

First, preregistering models, the predictions they make
and how they will be evaluated, are likely to improve the
confidence the field has in results and conclusions of confir-
matory model tests. Secondly, making models available and
postregistering exploratory model development increases
transparency and could speed model development. Thirdly,
undertaking detailed evaluation of models improves the
understanding of their strengths and weaknesses. Finally,
we believe that Registered Modeling Reports could incen-
tivise the field to test models that make risky predic-
tions, providing strong tests of theory and potentially rapid
progress (Platt 1964).
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