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We present a model of the encoding of episodic associations between items, extending the dynamic
approach to retrieval and decision making of Cox and Shiffrin (2017) to the dynamics of encoding. This
model is the first unified account of how similarity affects associative encoding and recognition,
including why studied pairs consisting of similar items are easier to recognize, why it is easy to reject
novel pairs that recombine items that were studied alongside similar items, and why there is an early bias
to falsely recognize novel pairs consisting of similar items that is later suppressed (Dosher, 1984; Dosher
& Rosedale, 1991). Items are encoded by sampling features into limited-capacity parallel channels in
working memory. Associations are encoded by conjoining features across these channels. Because
similar items have common features, their channels are correlated which increases the capacity available
to encode associative information. The model additionally accounts for data from a new experiment
illustrating the importance of similarity for associative encoding across a variety of stimulus types
(objects, words, and abstract forms) and types of similarity (perceptual or conceptual), illustrating the
generality of the model.
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The constructs of “similarity” and “association” are central to
many theories of cognition (Asch, 1969; Shepard, 1958). How-
ever, these terms are often used to refer to overlapping ideas, such
as a pair of objects being “associated” with one another by virtue
of having similar perceptual characteristics (e.g., both being red) or
a pair of words being “associated” as a result of their semantic
similarity (e.g., cat and dog). Theories of memory explicitly dis-
tinguish between these notions: Similarity is based on shared
perceptual and conceptual features between episodes while asso-
ciations link episodes together. To date, however, despite a wealth
of empirical work on the topic and its importance to psychological
theory, there has been no unified account of the relationship
between similarity and associative memory, that is, how shared
perceptual and conceptual features between items affects the epi-
sodic association formed between those items. This article presents

the first dynamic account of the relationship between item simi-
larity and the encoding of episodic associations, specifying how
associations arise from items and how shared features between
items affect the encoding and recognition of associations.

To explicate the relationship between similarity and association,
we distinguish between two kinds of information that can be stored
and retrieved from memory: “item” information which pertains to
individual components of an event; and “associative” information
that specifies which of those components co-occurred with one
another. These two kinds of information can be understood via an
example: Imagine you go to a party where you are introduced to
several couples, one of which is Amos and Betty, another of which
is Curtis and Dan. If at some point later you see Amos alone and
recognize that you have already met him, you are doing so on the
basis of “item” information pertaining to the event of having met
Amos in the context of the party. If you see Amos and Betty
together, you might recognize not just that you have met both of
them individually, but that you met them together as a couple;
recognizing the couple is based on associative information. Asso-
ciative information also allows you to recognize that, if you see
Amos and Dan together, you did not originally meet them as a
couple, even if you recognize each of them individually on the
basis of item information.

Now imagine that you meet another couple at the party, Emily
and Francine, who are both wearing red suspenders. Emily and
Francine thus bear some additional similarity to one another by
virtue of sharing that particular feature, irrespective of the fact that
they are a couple. Does this additional similarity nonetheless mean
that you are more likely to recognize Emily and Francine as a
couple than you would Amos and Betty or Curtis and Dan? Does
it mean that you are less likely to falsely recognize Emily and
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Betty as a couple? In other words, does the similarity between the
“items” Emily and Francine affect how the episodic association
between them is encoded in memory? This question is our focus of
this article.

We first review a set of critical results that establish key features
of the relationship between similarity and associative information
that have yet to be explained in terms of any single theory (Dosher,
1984; Dosher & Rosedale, 1991; Greene & Tussing, 2001), in-
cluding results from a novel analysis of a large-scale human memory
database (Cox, Hemmer, Aue, & Criss, 2018). To account for these
patterns, we present a dynamic theory of associative encoding that
extends the dynamic model of recognition by Cox and Shiffrin
(2017). This new theory embodies five core principles:

1. Items and associations are both encoded in memory as
sets of features.

2. Encoding associative features is based on conjunctions of
features between items.

3. When items are similar, they share features.

4. Although items are initially processed in separate parallel
channels in working memory, shared features between
those channels—whether item or associative—cause
them to become correlated.

5. Correlated processing leaves more capacity to encode asso-
ciative features and has consequences for decision bias.

Finally, we discuss implications of this model for memory and
learning more broadly.

Similarity and Associative Recognition

In this article, we devote much of our attention to a particular
paradigm used to study memory for associative information,
namely, associative recognition (though we will compare this with
other paradigms later). In this paradigm, participants study a set of
pairs of items such as words or images. In a subsequent test phase,
participants are asked to distinguish between pairs of items that
were studied together (“intact” pairs) from those that were studied
separately (“rearranged” pairs). Because the individual items in
each test pair were always studied, this task selectively measures
memory for the associative information that encodes which items
were studied at the same time. Good associative memory is indi-
cated by the ability to correctly recognize intact pairs (high hit rate
and/or fast correct recognition) and to reject rearranged pairs (low
false alarm rate and/or fast correct rejection).

Prior work using associative recognition to study how similarity
affects episodic associations has established a set of benchmark
results (Dosher, 1984; Dosher & Rosedale, 1991; Greene &
Tussing, 2001). Although we explore other kinds of stimuli later in
the article, these results are based on verbal stimuli where simi-
larity was typically defined in terms of semantic relatedness.

Dosher (1984) and Dosher and Rosedale (1991) investigated the
relationship between semantic similarity and episodic associations
by using different kinds of study and test pairs (see the examples
in Table 1). S�E� pairs are those that are both semantically related
(S�) and episodically associated (E�, “intact”); S�E� pairs are

those that are semantically unrelated (S�) but episodically associ-
ated (E�); S�Eu

� pairs are words that are semantically related (S�)
but were originally studied in separate unrelated pairs (Eu

�). There
are two kinds of S�E� pairs, that is, rearranged pairs that are not
semantically related: S�Eu

� pairs are formed by rearranging pairs
of items that had originally been studied with unrelated items;
S�Er

� pairs are formed by rearranging pairs of items that had been
studied with semantically related items. In addition, they employed
a signal-to-respond procedure in which participants had to with-
hold making any response until a signal was given, at which point
they had to quickly respond based on the information they were
able to retrieve before the signal was given. In this way, Dosher
and Rosedale (1991) were able to map out speed–accuracy trade-
off functions for each type of pair for each participant. They found
three critical results (see Figure 8):

1. Regardless of processing time, correct recognition of an
episodic association is better when pairs are semantically
related (S�E� � S�E�).

2. False recognition of a rearranged pair is reduced when its
members were originally studied as part of semantically
related pairs (S�Er

� � S�Eu
�), and this advantage in-

creased with additional processing time.

3. When given limited processing time, semantically related
rearranged pairs (S�Eu

�) tend to be falsely recognized as
having been studied, but this bias disappears when more
time is allowed (S�Eu

� � S�E� early, S�Eu
� � S�Eu

�

late).

The same pattern of asymptotic probabilities of giving a positive
response (i.e., calling the pair “intact”) was found in Experiments
1 and 2 by Greene and Tussing (2001) when participants were free
to respond at their leisure: S�E� � S�E� � S�Eu

� � S�Er
�,

whether semantic relatedness (S�) was defined in terms of synon-
ymy, antonymy, or shared category membership and regardless of
the amount of time allowed to study each pair. Note, however, that
in all the experiments so far reviewed, semantically related rear-
ranged pairs were always created by rearranging items that had
originally been studied in unrelated pairs (hence, they are labeled
S�Eu

�). The third experiment of Greene and Tussing (2001) tested
the missing S�Er

� condition by defining similarity in terms of

Table 1
Examples of Study and Test Pairs Used by Dosher (1984),
Dosher and Rosedale (1991), and Greene and Tussing (2001)

Partial study list Test pair

PRESENT—GIFT PRESENT—GIFT (S�E�)
CENTER—SUM CENTER—SUM (S�E�)
TOTAL—MIDDLE
ELM—MAPLE ELM—PINE (S�Er

�)
OAK—PINE
DINNER—VOW DINNER—SUPPER (S�Eu

�)
PROMISE—SUPPER
SUMMIT—PERSON SUMMIT—PATTERN (S�Eu

�)
CURTAIN—PATTERN
MOVIE—FILM MOVIE—REASON (S�Er

�)
MOTIVE—REASON
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shared category membership; for example, if ELM-MAPLE and
OAK-PINE were studied, an S�Er

� pair would be ELM-PINE.
Again using free response, this experiment resulted in the follow-
ing order of recognition: S�E� � S�E� � S�Er

� � S�Eu
� �

S�Eu
� � S�Er

�. While the asymptotic response ordering from
Dosher (1984) and Dosher and Rosedale (1991) is replicated
(S�E� � S�E� � S�Eu

� � S�Eu
� � S�Er

�), it is also clear that
when the studied and tested relationships are the same—that is,
both the study and test pairs contain items that are members of the
same category—participants are quite likely to falsely recognize
the pair as having been studied even if the items involved in the
relationship differ (S�Er

� � S�Eu
�). Finally, we note that in their

fifth experiment, Greene and Tussing (2001) found that partici-
pants were less able to tell when a pair of related words had been
reordered (e.g., BA vs. AB) relative to pairs of unrelated words.

While the aforementioned studies explicitly manipulated the
similarity between items in a pair, we find evidence for similar
qualitative patterns when we examine the incidental effects of
similarity on associative recognition. As described in Appendix C,
we were able to examine these incidental effects via a novel
analysis of a large-scale memory dataset (Cox et al., 2018), which
employed a free response procedure. This dataset also allowed us
to examine effects of nonsemantic kinds of similarity, specifically,
orthographic similarity (i.e., how similarly a pair of words is
spelled). Both orthographic and semantic similarity improved
the speed and accuracy of correct recognition of intact pairs
(S�E� � S�E�), though only orthographic similarity was
found to have a substantial effect on correct rejection, with
higher orthographic similarity at study leading to faster correct
rejection of rearranged pairs that “broke” that relation (S�Eu

� �
S�Er

�). We also examined similarity effects on memory tasks
included in this dataset besides associative recognition, which
we will discuss later. For the moment, this analysis illustrates
that effects of similarity on associative memory are not just an
artifact of stimulus construction, nor are they limited to just
semantic similarity.

Uniting this array of results under a single theoretical banner
has, thus far, proven elusive: The correct recognition advantage for
related pairs (S�E� � S�E�) coupled with the reduced rate of
false recognition when related pairs are broken (S�Eu

� � S�Er
�)

suggests a kind of “mirror effect” (Glanzer & Adams, 1985) in
which semantic relationships yield stronger encoding of episodic
associations. But this would not explain why rearranged pairs that
preserve a studied semantic relation tend to have high rates of false
recognition (S�Er

� � S�Eu
�). Likewise, stronger associative en-

coding for semantically related items would not explain the early
bias to falsely recognize related rearranged pairs, nor why this bias
disappears when more processing time is allowed. This feature of
response dynamics might reflect a change from an initial assess-
ment based solely on “relatedness” that is later discounted in favor
of an assessment based on episodic information, perhaps via a
slow-acting recall process. But this kind of dual-process account
would not explain why recall does not suppress relatedness for
S�E� pairs (which show an advantage regardless of processing
time) unless recall accuracy were higher for related pairs. But if
this were the case, one would not expect such a high rate of false
alarms to S�Er

� pairs even with unlimited processing time, and it
would incorrectly predict better order memory for related pairs.

A Dynamic Model of Associative Encoding

The set of results reviewed above present a distinct and funda-
mental challenge for psychological theory: How is associative
information about co-occurrence encoded in memory? Moreover,
the suppression of an early tendency to falsely recognize related
pairs as having been studied suggests that any explanation of the
above results must have a dynamic component. We therefore
propose a dynamic model of associative encoding that can explain
the above set of results in both qualitative and quantitative detail.

This account draws on two threads from our recent work: First
is the dynamic model for recognition memory proposed by Cox
and Shiffrin (2017) and second is the finding of dynamic interac-
tions between item and associative retrieval processes documented
by Cox and Criss (2017). According to the model proposed by Cox
and Shiffrin (2017), associative recognition decisions are based on
a set of “associative features” that emerge from the interrelation
and/or elaboration of the features of individual items. The assump-
tion that associative features depend on item features was based
chiefly on two empirical findings: item information is available
earlier than associative information (Gronlund & Ratcliff, 1989);
and instructions to focus on associative encoding do not impair
item memory whereas instructions to focus on item encoding do
impair associative memory (Hockley & Cristi, 1996). Our second
thread of research (Cox & Criss, 2017) verified two aspects of that
model of associative recognition: that item and associative infor-
mation are separable kinds of features (in that some decisions
could be made on the basis of just one kind of information, see also
Buchler, Light, & Reder, 2008); and that they interact during
retrieval such that positive recognition of intact pairs is based on a
holistic representation that encompasses both item and associative
features. These prior efforts were, however, concerned only with
the mechanisms involved in retrieving information from memory,
and left many details unspecified regarding how associative fea-
tures were encoded either during study or test.

Conceptual Outline

Each item in a pair is initially processed in its own separate
channel in working memory. These channels initially contain
features of the current context (e.g., the current time/location) and
gradually accumulate perceptual and semantic features over time
to form representations of each item. We presume that working
memory is limited in capacity, such that there is a maximum
number of unique features that it can maintain at any given time,
with this capacity needing to be allocated across channels (i.e., the
limit is with respect to the total number of unique features across
all channels).

As presaged in the Introduction, the core of our account is that
associative features arise from conjunctions of features between
items. As a result, associative features cannot be encoded until
there are already item features present in both channels in working
memory; this means that, in general, associative information is
available more slowly than item information. An associative fea-
ture can be thought of as representing the joint co-occurrence of a
specific pair of item features; the associative feature formed from
the conjunction of item features x and y is different from that
formed by the conjunction of item features x and z. Associative
features take up working memory capacity like any other feature
but like context features they are shared between the two item
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channels. As more and more associative features get encoded, the
two channels grow more correlated such that what were originally
two separate representations partially merge into a single joint
representation.

Similar items share item-specific features even before associa-
tive features can get encoded, causing their two otherwise inde-
pendent channels to be correlated as soon as they begin to be
encoded in working memory. This type of correlation has three
consequences: First, when a shared feature enters a channel that
matches one already encoded in the other channel, this feature is
not encoded redundantly and therefore does not take up any
additional capacity. Second, this free capacity can be used to
encode additional associative features, effectively leading to a
stronger episodic association between the two items. Finally, as
described in detail below, correlated channels result in a bias
toward positive responses.

The same encoding processes occur whether the pair is pre-
sented during study or during test. During study, the resulting pair
of working memory representations is transferred into a pair of
traces in long-term memory, with this transfer being potentially
incomplete and prone to error.1 During test, the working memory
representations in each channel are compared in parallel to all
traces in long-term memory, resulting in two match values, one for
each channel. As described in detail below, these match values
represent the average degree of similarity between the complete set
of features in a channel (i.e., it is a joint function of item, asso-
ciative, and context features) and the features stored in each
memory trace. These match values will be correlated to the extent
that the channels share features, whether they be item or associa-
tive features. In a response signal trial, participants continue to
encode features until the signal and make a positive response if
both channel’s (potentially correlated) match values are above a
criterion, otherwise they give a negative response. In a free re-
sponse trial, participants give a positive response as soon as the
match values in both channels have reached an upper criterion and
give a negative response if either channel’s match value drops
below a lower criterion. As described below, it is this exhaustive
decision rule for positive responses that produces a response bias
in the presence of correlated channels.

As we explain in detail below, this model accounts for the
complete set of empirical results outlined above, but these are the
highlights:

1. Shared features between items at study leads to storage of
more associative features, making it easier to detect when
a test pair contains matching associative features
(S�E� � S�E�) as well as when a test pair contains
mismatching associative features (S�Eu

� � S�Er
�).

2. Shared features between items at test lead to an early bias
to give positive responses when the two channels contain
mostly item features (S�Eu

� � S�Eu
� early), but because

shared item features enable encoding of more associative
features, this trend reverses over time as encoding more
associative features makes it easier to detect a mismatch
(S�Eu

� � S�Eu
� late).

3. Because associative features are formed by conjoining
item features, associative features formed between pairs

of similar items (e.g., ELM-MAPLE and OAK-PINE) are
themselves similar, making it harder to distinguish be-
tween such associations (S�Er

� � S�Eu
�).

The model is a direct extension of the dynamic model for
recognition described by Cox and Shiffrin (2017). Although that
model has been applied to associative recognition, it was a theory
primarily of retrieval and decision processes, rather than encoding.
In extending the model with an explicit dynamic theory of asso-
ciative encoding, we are able to make use of the same retrieval and
decision machinery that were shown to successfully account for
response times and speed–accuracy trade-off in a variety of other
memory domains to do so in the context of associative recognition.

Detailed Description

We now present the technical details of the model, illustrating
how the relations between item similarity and associative memory
arise from the mechanisms we propose. While many aspects of this
description recapitulate the model of Cox and Shiffrin (2017), we
include it here for completeness and have structured the descrip-
tion to emphasize the novel aspects here with respect to the
dynamics of different types of features (context, item, and asso-
ciative) and the operation of multiple concurrent channels in
working memory. As a reference, we summarize the key param-
eters and variables of the model in Table 2.

Representation and feature types. The event of encounter-
ing a pair of items at either study or test is represented in working
memory as a set of binary (0 or 1) features.2 There are three types
of feature, as depicted in the top row of Figure 1: context features,
which represent the time and location of the study event; item-
specific features, which represent the perceptual and conceptual
aspects of each item; and associative features which represent the
co-occurrence of the two items. We let NC denote the number of
content features (either item-specific or associative) that can be
held in a working memory channel and NX denote the number of
context features that can be held in a working memory channel.
For simplicity, we assume that NC � NX and that these two
numbers are fixed. We assume there are likely other capacity
constraints at play, perhaps a maximum number of channels or a
maximum total number of features that can be represented across
all channels in working memory, but because in this paper we
model only situations with pairs, we do not explore these possi-
bilities. As described below, the NC content features are allocated
differentially to item-specific and associative features.

Encoding dynamics. Pairs are encoded in working memory
according to the same dynamic process at either study or test. This
process involves sampling features into the working memory rep-
resentation, gradually building it up over time (e.g., Brockdorff &
Lamberts, 2000). This is depicted schematically in Figure 1, to
which the following description will refer.

From context to item-specific features. Initially, working
memory contains only features of the current context, as these

1 Presumably, this occurs during test as well, although we do not
investigate this in the present article.

2 In fact, features need not be binary, though this representation is
convenient. It is only important to the theory that there be a well-defined
probability of two features matching by chance, not that their values need
to be binary.
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are relatively persistent in the environment. Context features
generally pertain to the time, location, and situation and we
assume for present purposes—though it is surely an simplifi-
cation—that these context features do not change during the
course of either the study or test periods. Although item-
specific features will eventually arrive in separate channels,
these context features are common to both and are thus shared

across channels (Figure 1, A). When the two items are pre-
sented, they activate their perceptual and semantic features
which then enter a pool of features available to be sampled into
working memory; we presume this initial activation process
prior to feature sampling takes a certain amount of time t0 that
is approximately Gamma distributed with mean �0 and standard
deviation 	0. After this initial period, item-specific features

Table 2
Summary Description of Model Parameters and Variables

Quantity Description

NC Number of content (item-specific or associative) features that can be held in a single working memory channel. Arbitrarily set to 30.
NX Number of context features that can be held in working memory. Arbitrarily set to 30.
u Probability that a feature in working memory is transferred to a trace in long-term memory.
cS Probability that, given that a feature has been transferred to a long-term trace, it is transferred correctly.
s Proportion of item-specific features shared between two similar items.
pA Proportion of content features in working memory that are allocated toward encoding associative features.
t0 Residual time prior to the start of encoding. In free response, also includes the time needed to execute the response. Assumed to be

a random variable that varies from trial to trial according to a Gamma distribution.
�0 Mean of the distribution of t0.
	0 Standard deviation of the distribution of t0.

 Time between feature arrivals in working memory.
� Response criterion in a response signal paradigm.
pG In a response signal paradigm, probability of guessing a positive response if the signal arrives prior to the onset of feature sampling.
A0 In a free response paradigm, initial boundary separation.
b In a free response paradigm, degree of bias in response boundaries.
vI(t) Probability that an allocated item feature is encoded by time t (Equation 1).
vA(t) Probability that an allocated associative feature is encoded by time t (Equation 2).
�I(t) Proportion of active item features in working memory at time t (Equation 3).
�A(t) Proportion of active associative features in working memory at time t (Equation 3).
kA(t) Proportion of working memory capacity allocated for associative features at time t (Equation 11).
r(t) Correlation between channels at time t (Equation 12).
i,A(t) Activation of memory trace i in response to the contents of working memory channel A at time t (Equation 5).
�A(t) Memory strength in channel A at time t (Equation 6).
xA(t), xB(t) Memory evidence in two channels, A and B, at time t (Equations 7 and 8).
BO(t), BN(t) Upper and lower decision boundaries in free response at time t (Equations 9 and 10).

Ite
m

 B

Item-specific 
features

Associative 
features

Context 
features

Ite
m

A

A) Initially, only context features are active. 
These are shared across channels.

B) Item features are gradually sampled 
into each channel.

C) Associative features are encoded by 
conjoining item features. Associative 
features are shared across channels.

D) Eventually encoding capacity, split 
between item-specific and associative 
features, is exhausted.

E) Item features are sampled into each 
channel, some of which match and are 
shared across channels.

F) Associative features are still encoded 
by conjoining item features.

G) Shared item features take up less 
capacity, allowing more associative 
features to be encoded.

Similar item 
pair

Unrelated item 
pair

xA(t)

x B
(t)

xA(t)

x B
(t)

xA(t)

x B
(t)

“Yes” “Yes”“Yes”

Joint distribution 
of accumulated 

changes in 
memory strength

Intact

Rearranged

Pools of 
available item 

features

Pools of 
available item 

features

Figure 1. Illustration of how the two-channel working memory representation evolves as different features
become active for different types of pair. Middle row illustrates how the bivariate distribution of memory
strength between the two item channels evolves as different features enter the representation. Alphabetic labels
(A, B, C, . . .) correspond to the same times as in Figure 2. See the online article for the color version of this
figure.
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begin to be sampled into each channel in working memory
(Figure 1, B); the relation between sampling features for two
items versus a single item (e.g., in terms of speed and capacity)
was addressed in Cox and Shiffrin (2017) but will not arise in
this paper as we consider only situations with two items to be
encoded. Features are sampled into working memory according
to a Poisson process such that the probability that an available
item-specific feature is encoded in time interval � is 1

NC
and each

time interval takes a constant amount of time 
. Thus, the
probability that a feature is active by time t � t0 is

vI(t) � 1 � �1 � 1
NC�<

t�t0
�
=

(1)

where <·= is the “floor” function that returns the smallest integer
less than or equal to its argument.3

From item-specific to associative features. As noted above,
associative features arise from conjunctions of item-specific
features. These conjunctions need not be between features of
the same type or between features that occupy the same “posi-
tion” in the vectors used to represent each item. Still, associa-
tive features can only become active when there are pairs of
features in each item-specific channel in working memory
(Figure 1, C). Phrased another way, an association cannot be
formed until the participant knows something about the items to
be associated. The probability that a pair of features has been
encoded by time t is simply

vA(t) � vI
2(t) (2)

where vI(t) is defined in Equation 1. Encoding of associative
features based on conjunctions of item features embodies the
notion that associations depend on items but not the other way
around. This process also explains why associative information is
generally available later than item-specific information, because
associative features depend on the prior presence of item features.
Just like context features, associative features are shared between
the two item channels.

Allocation of encoding capacity. As noted above, we presume
that there is a limit to the number of content features that can be
encoded into working memory, specifically, that each channel can
hold a maximum of NC content features simultaneously. As a
result, this limited capacity needs to be divvied up between item-
specific and associative features as time goes on. We presume that
participants set aside a certain proportion pA of these NC features
for associative features; this value can be set strategically in
response to task demands, but may also reflect an ability on the
part of a participant to find and encode relations between item
features. To anticipate the fact that item similarity can allow
encoding capacity to be allocated dynamically (in response to the
detection of feature matches, described below), we let the function
kA(t) denote the proportion of content features allocated toward
associative encoding at time t, with kA(t) � pA, a constant, in the
event that the two items being encoded are not similar. Then we
can describe the proportion of content features in working memory
that contain either an item feature (�I(t)) or an associative feature
(�A(t)) at time t:

�I(t) � vI(t)�1 � vA(t)kA(t)� (3)

�A(t) � vA(t)kA(t) (4)

where vI(t) and vA(t) are given in Equations 1 and 2, respectively.
The working memory representation reaches a stable asymptotic
state when enough features have been sampled to fill up its
capacity (Figure 1, D; in the Discussion we describe how this may
be extended).

Storage. During a study trial,4 the asymptotic state of the
working memory representation of a pair is transferred to a pair of
traces in long-term memory (e.g., Atkinson & Shiffrin, 1968). One
trace is laid down per channel, such that one trace will encode the
item-specific features in Channel A along with the common asso-
ciative and context features while the other trace will encode the
item-specific features in Channel B along with the common asso-
ciative and context features (see Figure 3). This representation
preserves memory for individual items while allowing common
associative features to encode the fact that the individual items
co-occurred as part of the same pair (Criss & Shiffrin, 2004b).

Transfer is liable to be incomplete and prone to error. We presume
that all NX context features are transferred to the long-term memory
traces, due to their persistence in the environment (cf. Malmberg &
Shiffrin, 2005), but that the NC content features have probability u of
being stored. This probability may be increased given additional study
time or attention. For any feature (item-specific, associative, or con-
text) that makes it into a long-term memory trace, it is stored with the
correct value with probability cS; otherwise, with probability 1 � cS

a random value (either 0 or 1, with equal probability) is stored instead.
Features that are shared between channels (whether item, associative,
or context) are also shared in the resulting memory traces, meaning
that errors or omissions on those features are also shared between
traces.

Tracking memory strength. So far, we have described how
our model builds up a representation of a pair over time by
sampling features and how the resulting representation is trans-
ferred into a pair of long-term memory traces. As noted above, the
same feature sampling process occurs during a test trial. In order
to make a decision about whether the test pair is old/intact or
novel/rearranged, we presume that participants continually com-
pare their working memory representation to the traces in long-
term memory and track how the average match between working
memory and long-term memory changes as the representation is
built up. This average match—which we call memory strength (in
prior work, we have also called it “familiarity”)—will fluctuate as
a function of the features that are present in working memory at
any given time. A worked example of the results of the following
calculations at a specific point in time is depicted in Figure 4.

Trace activation. Each trace i in long-term memory has a
time-dependent activation level. For Channel A, this is i,A(t), and
there is a corresponding value for Channel B (the following will
describe just Channel A, but the same applies for Channel B).
Although more complex versions of this activation equation are
possible (see Cox & Shiffrin, 2012, 2017), we use a simple form
here. Trace activation is a function of the number of features that
match (Ni,A

M (t) or mismatch (Ni,A
N (t) between the trace and each

working memory channel (cf. Tversky, 1977). Specifically, it is a

3 The floor function arises because sampling in the model occurs in
discrete time intervals, but this is only an approximation to what is
presumably an underlying continuous-time process.

4 And, presumably, during test trials as well, though we do not model
this here for simplicity.
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likelihood ratio that compares the probability that the trace en-
codes the same event as that being held in working memory, to the
probability that they encode different events (McClelland & Chap-
pell, 1998; Shiffrin & Steyvers, 1997). The likelihood of a feature
match given that the trace and working memory encode the same
event is cS � �1 � cS�

1
2, whereas the likelihood of a match if they

encode different events is just 1
2 (because we assume equiprobable

binary features). The likelihood of a feature mismatch given that
the trace and working memory encode the same event is �1 �

cS�
1
2, whereas the likelihood of a mismatch if they encode different

events is, again, 1
2. The resulting activation equation is then

	i,A(t) ��cS � (1 � cS)
1
2

1
2

�Ni,A
M (t)�(1 � cS)

1
2

1
2

�Ni,A
N (t)

	i,A(t) � (1 � cS)
Ni,A

M (t)(1 � cS)
Ni,A

N (t).

(5)

Note that matches and mismatches can only occur between
features that are of the same type but may take on different values
(e.g., a color feature might take on values “red” or “green”); any
features that have a value encoded in working memory but not in
the trace or vice versa will not affect the match and are effectively
“missing” (but see Cox & Shiffrin, 2012). Trace activation in-
creases with the number of matching features of the same kind and
decreases with the number of mismatching features of the same
kind. Thus, a trace with many stored features will be more strongly
activated by a working memory representation of the same event
than a trace with fewer stored features and a trace with many
stored features will be more strongly deactivated by a different
event; similarly, a working memory representation with more
features will more strongly activate any traces in memory of the
same event and deactivate traces of different events than will a
sparse working memory representation. Finally, we note for em-
phasis that likelihoods are computed for each trace independently;
the comparison process does “know” anything about whether
different traces share features (e.g., whether two traces were
formed from the same pair and share context and associative
features). Similarly, the comparison does not “know” anything
about which features match or mismatch between a trace and a
working memory representation, for example, whether a match is
an item feature, associative feature, or context feature. The com-
parison process only “knows” about the total number of feature
matches and mismatches.

Memory strength. Because long-term memory contains a
nearly infinite number of traces from a participant’s prior life
history, we presume that any trace must pass a threshold level of
activity before it is able to contribute to memory strength. For
simplicity, we assume this threshold is 1, such that a trace will pass
if it contains enough matching content or context features to be
more likely to encode the same event as in working memory than
not. Memory strength is the logarithm5 of the average activation
across all traces that pass this threshold for each channel:


A(t) � log�	i,A(t) | 	i,A(t) � 1	 (6)

and similarly for Channel B (which tracks �B(t)).
Changes in memory strength. Recognition decisions are

based on how memory strength changes over time as content
features are sampled into working memory, in other words, how

newly encoded features affect memory strength. Thus, recognition
depends on accumulating the changes in memory strength that
result as features are sampled and encoded beyond the initial
context features (Figure 1, A). Computationally, this amounts to
subtracting the initial level of memory strength at time t0, which
represents a baseline based on context features only, from the
current memory strength at time t which is based on both context
and whatever content features have been encoded by that time. We
can write this quantity for each channel as

xA(t) � 
A(t) � 
A(t0) (7)

xB(t) � 
B(t) � 
B(t0) (8)

where �A(t0) � �B(t0) because at that point the two channels only
contain context features are thus perfectly correlated. The role of
context is thus to define the initial state of activation of traces in
long-term memory which sets the criterion level of memory
strength against which subsequent changes are evaluated—posi-
tive shifts in memory strength from this initial reference level
indicate evidence for recognition while negative shifts provide
evidence for novelty. Context also plays a role in focusing retrieval
on recent events, because traces formed in contexts dissimilar to
that of the test period would be unlikely to reach the activation
threshold unless they also contained an overwhelming number of
matching content features (such traces may, indeed, become active
after enough such features have been sampled, though for simplic-
ity we do not explore that possibility in this article).

Correlations between channels. If the same feature enters
each channel, it will lead to similar changes in memory strength in
each channel. As a result, changes in memory strength are corre-
lated between channels to the extent that the same features get
sampled into each channel. This happens when an associative
feature is sampled, since such features are shared between chan-
nels by definition, as reflected in the middle panels of Figure 1. It
also happens when items share features due to similarity. Note that
correlation does not arise from shared context features because
what is tracked is changes in memory strength, and context does
not change within a trial (at least not relative to the rapid changes
resulting from sampling content features). Correlations are induced
when new features get sampled that are shared between channels,
either due to similarity or to associative encoding. Cross-channel
correlations are crucial for understanding the effect of similarity on
associative recognition, and we describe this in further detail
below.

Making a decision. The tasks we address in this article in-
volve making a binary choice about whether a pair of items
matches a pair that had been studied (i.e., is intact) versus whether
they do not (e.g., they are rearranged or contain at least one item
that had not been studied). As a result, we specify that positive
recognition decisions are exhaustive, that is, they require that both
channels provide evidence supporting a positive decision, whereas
negative decisions (rejections) are self-terminating in that only one
channel need provide evidence against a match for the whole pair
to be rejected (Townsend & Ashby, 1983). Different paradigms
may, of course, entail different decision rules.

5 Taking the logarithm means that model dynamics can be described on
a linear rather than multiplicative scale, but otherwise does not affect the
qualitative features of the model.
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Response signal. In a response signal experiment, we assume
that participants continue to sample features and build up their
working memory representation of the test pair (up to capacity
limits) until the signal is given, at which point participants respond
on the basis of whatever features they have sampled by that time.
If both channels have memory evidence (xA(t), xB(t)) that is above
a criterion �, the participant responds “yes,” indicating that they
believe the pair matches one that had been studied. If either or both
of the channels have memory evidence below �, the participant
gives a negative response instead. If the signal arrives before any
content features have been sampled at all (i.e., before t0, which
varies from trial to trial according to a Gamma distribution, as
described above), the participant simply guesses “yes” with prob-
ability pG. Thus, early responses tend to be a mixture of guesses
and responding based on an impoverished representation of the test
pair; somewhat later responses may be based primarily on evi-
dence from item-specific features, because associative features
may not have had time to be sampled; and very late responses will
be the most accurate, being based on a rich representation of the
test pair.

Free response. As described in Cox and Shiffrin (2017), be-
cause memory strength in our model eventually stops changing as
working memory reaches its capacity, we assume that participants
engaged in free response adopt decision boundaries that grow
closer together over time as a function of the amount of free
capacity in working memory. An upper decision boundary, BO(t),
specifies the level of evidence needed to commit to a “yes”
decision at time t while a lower boundary, BN(t), specifies the level
of evidence needed to commit to a “no” decision at time t. At or
before time t0, these boundaries are A0 units apart and their
midpoint, �1

2 � b�A0, is defined in terms of a bias parameter b such
that b � 1

2 means less evidence is needed for a positive than
negative response while b � 1

2 means the opposite. These bound-
aries gradually collapse toward their midpoint over time as more
features accumulate in working memory, specifically:

BO(t) � �1
2 � b�A0 � [1 � �I(t) � �A(t)]

A0

2 (9)

BN(t) � �1
2 � b�A0 � [1 � �I(t) � �A(t)]

A0

2 (10)

These boundaries apply separately and independently in each
channel, such that xA(t) and xB(t) are both compared with the same
BO(t) and BN(t). As soon as either xA(t) � BN(t) or xB(t) � BN(t)
(that is, the evidence in at least one channel has exceeded the lower
decision bound), a participant gives a negative response at time t.6

A positive response is given at time t when either xA(t) � BO(t) and
xB(�) � BO(�) for some prior time � or xB(t) � BO(t) and xA(�) �
BO(�) for some prior time � (in other words, if both channels hit the
upper boundary before ever hitting the lower boundary). These
decision rules are depicted in Figure 5.

Similarity. Thus far, we have described a situation in which
pairs consisted only of unrelated items that did not contain over-
lapping features. We now describe the consequences that arise in
this model when items are similar to one another, which we define
in terms of the proportion s of item-specific features that are shared
between two items.

Associative encoding capacity. Because working memory in
our model is limited in its capacity to hold unique features, a
feature that is shared between two items frees up a feature than can

then be used to encode and maintain an additional feature. For
now, we assume this extra capacity is allocated toward encoding
associative features at the same rate as the original features (pA),
though other allocation policies are possible. Specifically, we
assume that item-specific features are sampled independently (that
is, matching features are not sampled at a faster rate) and that,
when a new item-specific feature is found to exactly match the
corresponding feature in the other channel, the two features are
collapsed together into a single shared feature (Figure 1, E). As a
result, the capacity available to encode associative features grad-
ually increases as matching item-specific features are found ac-
cording to:

kA(t) � 1 � (1 � pA)�1 � pAsvI
2(t)� (11)

in other words, either the capacity had already been allocated
already (with probability pA) or a matching feature has been found
between both channels (with probability svI

2(t)) and the extra
capacity allocated toward a new associative feature (again, with
probability pA; Figure 1, F and G; Figure 2a).

Associative storage. Because similarity allows for the encod-
ing of more associative features into the working memory repre-
sentation of the pair, more associative features may be stored in the
resulting long-term memory traces without impeding the storage of
item-specific features. Therefore, while item-specific features are
still stored with probability u, associative features are effectively
stored with probability 1 � (1 � u) (1 � us), that is, the proba-
bility of storage increases in proportion to the extra capacity
afforded by similarity.

Correlated channels. Just like shared associative features in-
duce a correlation between the initially independent item process-
ing channels, a correlation is introduced when sampling an item
feature that is shared between channels (Figure 1, E). As a result,
the memory evidence signal in each channel is also correlated in
direct proportion to the similarity s between the two items (Figure
2b). Specifically, the average cross-channel correlation at time t,
r(t), is given by

r(t) � s � (1 � s)�A(t) (12)

where �A(t) is as defined in Equation 4. Note that the component
of the correlation due to shared item features (s) is not dependent
on time because it is present from the very beginning of the trial
when only item features are being sampled.7

Correlation has an important consequence for response pro-
portions, as is clear from inspecting the bivariate distributions
in the middle panels of Figure 1 and which is illustrated in more
detail in Appendix B: Correlations move more of the bulk of the
distribution away from the upper left and lower right decision
regions and into the upper right and lower left; in other words,
it becomes more likely that the signals in the two channels will
agree. But because the decision rule in the tasks currently under
consideration is exhaustive for positive responses, this has the

6 Note that, in free response, we assume that t0 incorporates both the
initial processing delay and the motor execution time, since these cannot be
disentangled from the response time alone.

7 It is important to distinguish correlation from covariance, since even if
there is a correlation present early in the trial, it is unlikely to reflect large
covariance per se because the amount of variance depends on the amount
of features that have been sampled, as illustrated in Figure 1.
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effect of increasing the probability of giving a “yes” response
even when only item features are present in working memory.
This leads directly to the prediction of an early response bias for
related but unstudied pairs, which is then counteracted by the
fact that shared item features allow more capacity to encode
associative features which fail to match those stored in any
memory trace.

Similarities to and Innovations From Cox and Shiffrin
(2017)

The model presented here extends the model of Cox and Shiffrin
(2017) to explain associative encoding via parallel correlated chan-
nels and includes their original model as the special case in which
there is only one channel and it is used to encode only item-
specific features (i.e., pA � 0). The following features are identical
to the previous model:

• The representation of events as sets of features which are
stored in separate traces in long-term memory.

• The likelihood computation determining the activation of
a memory trace in response to a probe in working memory
(Equation 5).

• The computation of familiarity as the average likelihood
over traces whose likelihood exceeds a threshold value of
one (Equation 6).

• The accumulation of features in working memory over
time as a Poisson process (such that feature activation
probability is described by Equation 1).

• The accumulation of changes in familiarity over time from
an initial value determined by context alone as the basis
for recognition decisions (here given in terms of two
channels in Equations 7 and 8, rather than the single
channel of the original theory).

• The decision rules for response signal and free response
experiments, including the use of decision bounds that
collapse as a function of the proportion of features sam-
pled into the probe (Equations 9 and 10).
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Figure 2. Example depictions of how key encoding variables evolve over time. Alphabetic labels (A, B, C, . . .)
refer to the same points in the process described in Figure 1. (a) Probability of activation for item-specific
features (�I(t), Equation 3) and associative features (�A(t), Equation 4) over time as a pair of either related or
unrelated items is encoded into working memory. (b) Correlation between item channels (r(t), Equation 12) over
time as a pair of either related or unrelated items is encoded into working memory. See the online article for the
color version of this figure.
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Figure 3. An illustration of how a representation of a pair of items, built up in two working memory channels
(labeled “A” and “B”), gets stored as a pair of traces in long-term memory at the conclusion of a study trial. The
two new traces join other traces already present in long-term memory. While context features are always able
to be stored, other types of features might not make it. Of those features that are stored in memory traces, there
is a chance that they are stored incorrectly. See the online article for the color version of this figure.
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As a result, the model we have presented here is able to
accommodate the various findings from our earlier work, but is
now equipped to explain how associations are encoded and how
encoding leads to the various phenomena described in the Intro-
duction. We now highlight the key innovations from the previous
model.

An explicit account of delayed associative information. In
our prior model, we simply assumed that associative features were
available later than item-specific features and left the time at which
they could be sampled into working memory as a free parameter.
In the present model, the delay is explicitly modeled as arising
from the fact that associative features become available only when
pairs of features can be conjoined between items. As a result,
associative features can only enter working memory after a suffi-
cient number of item features have already arrived. Indeed, we
suggested in our prior work that this might have been the reason
for the delay in the onset of associative information, but the present
model embodies this explicitly.

The potential for correlated processing. Our prior model
assumed complete independence between item processing chan-
nels, even when associative features entered working memory.
However, in light of our newer empirical results (Cox & Criss,
2017), it was clear that a mechanism was needed to explain the
holistic signal that our results suggested participants were using to
make positive recognition decisions. Correlated channels provide
this mechanism (see also Townsend & Wenger, 2004) and, as we
note in the Discussion, help to build a bridge between encoding of
episodic associations and well-learned associations. We demon-
strate in Appendix A that the current model correctly reproduces
the qualitative signatures used by Cox and Criss (2017) to detect
this holistic signal.

An account of free response in associative recognition. Our
prior model was applied only to response signal experiments, but
the present model has been extended to account for free response
in associative recognition using the same accumulation-to-
collapsing-boundary mechanism employed by Cox and Shiffrin
(2017) to explain free response in item recognition.

A relation between similarity and association. But, of
course, the chief innovation—and the subject of the article—is an
explicit account of the relationship between item similarity and
episodic associations. This serves to build out the original model,
which focused on the dynamics of retrieval and decision making,
to the dynamics of encoding.

Applying the Model

Having described our dynamic model of associative encoding
and recognition, we first illustrate its qualitative features before
fitting it directly to individual participants to assess how well it
accounts for the quantitative details of speed–accuracy trade-off in
associative recognition. Model simulations were conducted using
the continuous approximation described in Appendix A of Cox and
Shiffrin (2017), with the exception of response time distributions
which were computed using a matrix approximation (Diederich &
Busemeyer, 2003) because the renewal-process approximation
used in our previous efforts (P. L. Smith, 2000) could not be easily
applied to correlated channels. Simulation code is available via the
Open Science Framework (https://osf.io/7xkzp/).

Qualitative Behavior

To illustrate the behavior of the model—particularly the fact
that it produces the same qualitative ordering of responding de-

1 1 0 1 1 1 0 0 0

1 1 1 1 1 1 0 0 0B
A

1 1 0 1 1 0 1 1 0 0 1

Item-specific 
features

Associative 
features Context features

1 1 0 1 1 0 0 11 1

A(t) = 1.92 B(t) = 1.54

Traces in long-term memory

Working memory during test trial at time t

xA(t) = 1.18 xB(t) = 0.80

0 1 0 1 1 1 1 0 00 1 1

0 1 0 1 1 1 1 0 01 0 1

Channel A Channel B

N1,A
M(t) = 7, N1,A

N(t) = 1

1,A(t) = 12.24
N1,B

M(t) = 6, N1,B
N(t) = 2

1,B(t) = 1.36

N2,A
M(t) = 6, N2,A

N(t) = 2

2,A(t) = 1.36
N2,B

M(t) = 7, N2,B
N(t) = 1

2,B(t) = 12.24

N3,A
M(t) = 5, N3,A

N(t) = 2

3,A(t) = 0.76
N3,B

M(t) = 5, N3,B
N(t) = 1

3,B(t) = 3.78

N4,A
M(t) = 6, N4,A

N(t) = 1

4,A(t) = 6.80
N4,B

M(t) = 6, N4,B
N(t) = 2

4,B(t) = 1.36

Trace activation and 
memory strength at time t

Figure 4. A simplified worked example illustrating how memory strength in each channel at a specific point
in time t is computed by comparing the features in each working memory channel to those stored in each memory
trace. Items A and B were in fact studied together as a pair, with the first two traces in memory corresponding
to those stored from that original AB event. The other two traces in this example were stored from studying a
different pair (CD) in the same study period. Note that all traces contain similar context as a result of having been
studied in the same period, and that the traces of each pair share their associative features. The columns in the
right illustrate how trace activation (i,j(t); Equation 5) is based on the number of matching (Ni,j

M(t)) and
mismatching (Ni,j

N(t)) features between each trace and working memory channel. These trace activations are used
to compute an overall memory strength in each channel (�j(t); Equation 6) which is compared against the initial
level of memory strength based on context alone to yield the accumulated change in memory strength (xj(t);
Equations 7 and 8) which is the basis for recognition decisions. For this example, we set cS � 0.8. See the online
article for the color version of this figure.
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scribed in the Introduction—we simulated a simple situation in
which a participant has studied two pairs of items, A-B and C-D,
in the same context. The participant is then tested with either the
intact pair A-B (which should elicit a “yes” response) or the
rearranged pair A-D (which should elicit a “no” response).

The two studied pairs are stored as two pairs of traces in
long-term memory, each of which contains features specific to the
paired items, associative features representing the co-occurrence of
the two items, and features of the context in which the pairs were
encountered, as described above. According to the model, when a
pair is presented at test, the activity of these traces will fluctuate
over time as first item-specific and then associative features of the
test pair accumulate in working memory in two channels that are
initially separate and then grow more correlated as they are bound
together by associative features. A “yes”/“no” recognition decision
results from tracking the average changes in activity from the start
of the test trial until either a response signal is given or the changes
in each channel reach certain upper or lower decision bounds (see
above).

We vary two quantities in these simulations: First is the simi-
larity between A and B, which we label sIntact. According to the
model, increasing sIntact will allow for greater encoding of asso-
ciative features in working memory and in the memory trace,
making it easier to correctly recognize the intact pair as well as
detect when the pair has been rearranged. Second, we vary the
similarity between A and D, which we label sRearr.. According to
the model, increasing sRearr. will introduce an initial bias to con-
sider A–D as having been studied due to the correlation between
their item representations, but this will get suppressed when this
very correlation allows for the encoding of more associative fea-

tures in working memory. Increasing the similarity between A and
D will also affect recognition of the intact pair A–B because the
item features of A will partially match those of D stored in the
trace for C–D. Simulation results are shown in Figure 6.

The initial “dip” in correct recognition of an intact pair that is
evident under some conditions (see the upper left corner of Figure
6a) occurs in many situations and is a consequence of the fact that
the first few features sampled will tend to match only a single item
(in this case, item A) but will not match any other item (B, C, or
D) thus reducing average memory strength until mismatching
traces are deactivated by additional features. Consistent with this
property of the model, increasing either sIntact or sRearr. eliminates
this early dip because it causes the first few features to match two
items (either A and B or A and D, respectively), balancing them
against any mismatching features (a similar process underlies
masked priming; Cox & Shiffrin, 2017).

When sIntact � 0, increasing sRearr. has the anticipated effect of
introducing an initial bias to give A–D an incorrect positive
response (Figure 6a) which manifests as a greater proportion of
fast false alarms (Figure 6b). Note, however, that this does not
necessarily lead to a bias later, once associative features have been
encoded, corresponding to the finding in the Introduction that
S�Eu

� � S�E� early but S�Eu
� � S�Eu

� later in recognition
(Figure 6a); indeed, when feature storage is particularly robust, the
ability to encode more associative features with SRearr � 0 at test
can actually lead to lower asymptotic probability of false recog-
nition as sRearr. increases (Figure 6c), a prediction we explore later
in this section.

In accord with expectations, when sRearr. � 0, increasing sIntact

leads to a much stronger match to the intact A–B trace (Figure 6a)
leading to faster and more frequent correct recognition (Figure 6b),
corresponding to S�E� � S�E�, as well as faster and more
frequent correct rejection of rearranged pairs that break this stud-
ied relationship (S�Eu

� � S�Er
�). Note that the increased match to

B’s item-specific features as sIntact increases affects early re-
sponses to rearranged pairs as well (Figure 6a), but these are less
apparent in free response (Figure 6b) because most of these re-
sponses occur after the initial period in which item-specific fea-
tures are dominant.

When both sIntact � 0 and sRearr. � 0, the associative features
formed between A–D are partially similar to those formed between
A–B, because they are a function of conjunctions of item features.
As a result, it becomes harder and harder to distinguish the
rearranged A–D pair from the studied A–B pair. So while increas-
ing sIntact is beneficial for rejecting dissimilar rearranged pairs
(with comparatively low sRearr.), similar rearranged pairs are ac-
tually more likely to elicit a positive response when sIntact is high
(corresponding to S�Er

� � S�Eu
�). In the limit, when sIntact �

sRearr. � 1, items A, B, and D are all exactly identical and there is
no way to tell A–B apart from A–D and their speed–accuracy
trade-off functions and response time distributions are precisely
equal (bottom right panels of Figures 6a and 6b).

Dosher (1984) and Dosher and Rosedale (1991)

Inspecting Figure 6a reveals how the model matches the qual-
itative patterns in speed–accuracy trade-off reported by Dosher
(1984) and Dosher and Rosedale (1991), as described in the
Introduction. S�E� pairs are intact pairs with sIntact � 0 whereas

"Yes"

"No"

"Yes"

"No"

Time

x(
t)

Intact

Rearranged

Pair type

Unrelated

Related

Figure 5. Example illustrating how recognition decisions are made in
free response. Each trace represents the memory signal x(t) in each of two
channels corresponding to the two items in the test pair (see Equations 7
and 8). A “no” decision is made as soon as the signal in at least one channel
reaches the lower decision bound (even if the other channel has reached the
upper decision bound). A “yes” decision is made only when both channels
have reached the upper decision bound. Note that features shared between
related items cause their signals to be more strongly correlated. See the
online article for the color version of this figure.
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ba

dc

Figure 6. Simulations illustrating how responses change as the similarity between items in an intact pair (sIntact)
and in a rearranged pair (sRearr.) are varied for different degrees of storage u. Other model parameters (see Table
2) are: cS � 0.95, pA � 0.3, �0 � 0.25, 0 � 0.25, � � 0.01, � � 0, pG � 0.5, A0 � 30, b � 0.5. (a) Probability
of giving a positive response as a function of response signal lag, u � 0.3. (b) Cumulative free response
probability as a function of response time, u � 0.3. (c) Probability of giving a positive response as a function
of response signal lag, u � 0.8. (d) Cumulative free response probability as a function of response time, u � 0.8.
See the online article for the color version of this figure.
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S�E� pairs have sIntact � 0; and just like in the data, intact
recognition probabilities are uniformly higher when sIntact � 0.
S�E� pairs are rearranged pairs with sRearr. � 0, which evince the
same early positive response bias seen in the data. Finally, S�Er

�

pairs are pairs with sRearr. � 0 but sIntact � 0, which have lower
asymptotic response probability than S�Eu

� with sIntact � 0.
In accord with their experimental paradigm, we simulated study

of 21 pairs, each of which was represented as a pair of coupled
traces in long-term memory, as described above. Best fitting
parameters for each participant are given in Table 3 and model
predictions are shown for each participant in Figure 7, averaged
across participants in Figure 8. These illustrate that the model
provides a good quantitative account of associative recognition at
both the group and individual levels, in addition to capturing the
correct qualitative patterns.

But while these experiments illustrate the canonical pattern of
responding described in the Introduction, the third experiment by
Dosher (1984) presented participants with a different scenario in
which study pairs were always unrelated, such that participants
could, in principle, reject any test pair that consisted of related
words. In other words, there were only three conditions, S�E�,
S�E�, and S�Eu

�. While some participants still showed early false
alarms to S�E� pairs, all of them were able to, at long lags,
correctly reject S�E� pairs more often than S�Eu

� pairs. This result
is obviously not compatible with an account that simply “adds
strength” to S�E� pairs, and was originally interpreted as the use
of a rule to reject any pair if the participant judged them to be
related.

Alternatively, this “hypersuppression” is readily understood in
the context of our model as a consequence of how the correlated
processing of related items allows for greater encoding of asso-
ciative features at test. By comparison with Figures 6a and 6c, this
is a situation in which sIntact � 0 but 0 � SRearr. � 1, where
although similarity between items in the test pair leads to an initial
bias, it gets counteracted by the fact that this allows for greater
associative encoding. Fits to individual speed-accuracy functions
(Figure 9; average fit shown in Figure 10) illustrate that the model
captures the suppression of S�E� false alarms quite well. Inspec-
tion of Table 3 suggests that the critical parameter difference that
yields hypersuppression, relative to the less extreme suppression

observed in Dosher and Rosedale (1991) and Dosher’s (1984)
Experiment 1, is the probability of feature storage u. Thus, just like
in Figure 6c, the extra associative features available when encod-
ing S�Eu

� pairs lead to hyper-suppression of these pairs by making
it exceptionally easy to detect the mismatch between their asso-
ciative features and those that were studied.

Experiment

Our dynamic model of associative encoding says that shared
item features of any kind make it possible to encode more asso-
ciative information in memory, leading to better recognition of
intact pairs and better rejection of rearranged pairs, as well as an
early bias to call related pairs “old” that gets overwhelmed by the
fact that such pairs contain shared item features that allow for more
associative features later on. Thus far, our account has only been
applied to experiments that used verbal stimuli and defined simi-
larity only in terms of semantic relatedness. Therefore, we con-
ducted a new associative recognition experiment to assess whether
the same qualitative patterns (e.g., Figure 6) would result using
nonverbal stimuli and/or nonsemantic forms of similarity. The aim
of this experiment was largely exploratory and was meant to study
a wide range of potential forms of similarity.

Method

Participants

Eighty-three Syracuse University undergraduate students partic-
ipated in this study in exchange for course credit in accord with
local Institutional Review Board policy.

Materials

Stimuli were one of three kinds: pictures of common objects
(Brady, Konkle, Alvarez, & Oliva, 2013, drawn from), distorted
versions of those objects, or words, as shown in Figure 11. The
object stimuli consisted of 100 quartets, where each quartet com-
prise two pictures of two objects each, depicting each object in one
of two states. There are three ways to draw two nonoverlapping

Table 3
Best-Fitting Model Parameters to Response Signal Experiments

Experiment Participant u cS s pA � pG �0 	0 


Dosher, 1984 R.H. 0.40 0.98 0.58 0.36 0.07 0.97 0.24 0.14 0.008
Exp. 1 M.D. 0.38 0.99 0.94 0.29 1.14 0.48 0.18 0.07 0.003

B.M. 0.45 0.96 0.83 0.62 �1.59 0.58 0.11 0.06 0.017
S.W. 0.34 0.99 0.49 0.50 0.00 0.24 0.16 0.49 0.011

Dosher & Rosedale, 1991 S.B. 0.42 0.97 0.96 0.41 0.00 0.75 0.32 0.19 0.007
Exp. 1 I.V. 0.54 0.98 0.95 0.36 1.15 0.03 0.42 0.17 0.004

G.R. 0.42 0.98 0.36 0.51 0.00 0.57 0.38 0.18 0.007
M.S. 0.40 0.98 0.66 0.29 0.04 0.22 0.23 0.66 0.012
B.M. 0.43 0.98 0.69 0.33 0.58 0.45 0.15 0.07 0.014
P.W. 0.44 0.98 0.89 0.26 0.40 0.77 0.16 0.09 0.013

Dosher, 1984 W.S. 0.65 0.91 0.88 0.28 �0.39 0.20 0.52 0.95 0.009
Exp. 3 R.C. 0.64 0.97 0.65 0.39 �0.00 0.30 0.24 0.30 0.008

B.M. 0.75 0.95 0.97 0.48 �0.06 0.29 0.28 0.29 0.009
L.H. 0.86 0.97 0.99 0.26 �0.90 0.72 0.65 0.19 0.004
A.M. 0.95 0.95 0.63 0.32 �1.42 0.12 0.90 1.06 0.005
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pairs from a quartet, such that there are three types of object pair:
causally related pairs (same object in two different states); cate-
gorically related pairs (different objects but in the same state); and
compound causal � category pairs (different objects in different
states).

Distorted versions of each object quartet were created by verti-
cally flipping each image and then translating its pixels according
to a randomly generated Perlin fractal noise texture. Although
different noise textures were used for each quartet, within a quar-
tet, the same noise texture was used to distort each image. The
effect was that each image in the same quartet was subjected to the
same distortion, preserving the local pixel relationships while
disrupting the global form of the images and making them uniden-
tifiable. By comparing normal to distorted objects, we gain infor-
mation about the relative importance of conceptual and perceptual
features to associative encoding.

Verbal stimuli were also designed to form quartets, where again
any pair from the quartet embodies a particular relationship (or
lack thereof) between the items in the pair. There were two kinds
of verbal quartets: In one type, pair members either had no sys-

tematic relationship or could be combined to form compound
words. In the other type of quartet, pair members were either
synonyms, orthographic neighbors, or had no systematic relation-
ship. The possible verbal relationships thus run the gamut from
being unrelated, to being semantically similar (synonyms), percep-
tually similar (orthographic neighbors), or potentially unitized
(compound words). In all, there were 48 of each type of verbal
quartet.

Design and Procedure

The experiment was implemented in PsychoPy (Peirce, 2007).
Each participant engaged in 16 study/test blocks, four using nor-
mal object stimuli, four using distorted object stimuli, and eight
using verbal stimuli. The order of blocks was randomized for each
participant. Each study list consisted of 24 pairs of items—two
nonoverlapping pairs from 12 quartets—presented for 3 s each in
random order (with a 1 s interstimulus interval), under the con-
straint that two pairs from the same quartet would not be presented
one after the other. Which set of pairs was shown at study was

Figure 7. Observed response proportions (points with 95% confidence intervals) and model predictions (lines)
for individual participants in the indicated response signal experiments. See the online article for the color
version of this figure.
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counterbalanced across quartets, for example, for object stimuli
four quartets were causal pairs, four were category pairs, and four
were causal � category pairs. Each verbal list was comprised of
six sets of pairs from compound-word quartets and six sets of pairs
from synonym/neighbor quartets (again, the set of pairs within a
quartet that were studied was counterbalanced across quartets
within each list). At test, half of the pairs were shown intact and
half were rearranged, with assignment of intact/rearranged (and,
for rearranged pairs, how they would be rearranged) being coun-
terbalanced across quartets within a list. Any given item would
only been seen by a participant in a single study/test block, and if
a participant encountered an object quartet in distorted form, they
would never encounter it in its original form, and vice versa.

During study, the items in each pair were presented next to one
another in horizontal orientation, with left/right position deter-
mined randomly. Prior to each study list, participants were told to
try to remember the items in the list as well as which items
appeared together at the same time (i.e., as part of a pair). After
presentation of the study list, test instructions were shown to
participants for a minimum of 15 s, after which they could pro-
ceed. These instructed participants that they should give a positive
response (using either the J or F key, randomly assigned per
participant) when shown an intact pair and a negative response
(using the other key) otherwise, and that they should try to make
their responses as quickly and accurately as possible. The items in
each test pair were presented on top of one another in vertical
orientation, with top/bottom position determined randomly, to
preclude any bias due to left/right item position at study. Each test
trial began with a fixation cross in the center of the screen for 500
ms, followed by presentation of the test pair which remained on
screen until the participant made their response. After responding,
participants were told whether their response was correct or incor-
rect; if they made a response in less than 300 ms, they were also
shown a message to “Please take more time to respond” and if they
responded in more than 4 s, they saw a message to “Please try to
respond more quickly.” Feedback was displayed for at least 1 s,
and for an additional 3 s if the response was under 300 ms. A
random interval between 1.25 s and 1.75 s preceded the onset of
the next test trial.

Results

Prior to analysis, we excluded four participants who failed to
give more positive responses to intact pairs than to rearranged
pairs (of any type). After this, we additionally excluded 58 trials
(out of 24,223) with response times less than 200 ms, because
these could not have reflected any processing of the stimulus itself,

Figure 8. Observed group mean response proportions (points) and model
predictions (lines) across participants from Experiment 1 of Dosher (1984)
and Experiment 1 of Dosher and Rosedale (1991). See the online article for
the color version of this figure.

Figure 9. Observed response proportions (points with 95% confidence intervals) and model predictions (lines)
for participants in Experiment 3 of Dosher (1984). See the online article for the color version of this figure.
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as well as 157 trials with response times longer than 5 s, because
these were likely to have been contaminated by lapses of attention
or other processes not primarily related to the task. The following
analyses are based on 24,008 trials from 79 participants.

Object Stimuli

The mean proportions of positive recognition responses and me-
dian correct response times for object stimuli are shown in Figure 12.
A 3 (studied relation) � 3 (tested relation) � 2 (distorted/normal)
factor within-subjects ANOVA8 on probability of giving a positive
response in the object conditions finds main effects of study relation,
F(1.93, 150.9) � 42, p � .001, test relation, F(1.99, 155.6) � 7.9, p �
.001, and distortion, F(1, 78) � 98.3, p � .001, as well as interactions
between study and test relation, F(2.46, 192.1) � 219.6, p � .001, test
relation and distortion, F(1.99, 154.8) � 6.2, p � .003, and the
three-way interaction between study relation, test relation, and distor-
tion, F(3.4, 263.4) � 101.6, p � .001. The same analysis of variance
on median correct reaction time (RT) identifies a main effect of study
relation, F(1.99, 109.7) � 4.3, p � .02, and an interaction between
study and test relation, F(3.13, 172.4) � 9.07, p � .001.

Although participants were able to distinguish intact and rearranged
pairs of normal objects, they were generally less able to do so for
distorted objects, except when the original studied relation involved
some degree of similarity between the items in the pair (either the
same object or the same state). The fact that response times are similar
between normal and distorted objects suggests that participants are not
simply “giving up” when confronted with distorted objects. Instead,
differences between these types of stimuli can be attributed to the
relative difficulty of distorted objects relative to normal ones (of
course, participants may still adjust their decision criteria in response
to these difficulties).

With respect to correct recognition of intact pairs, participants were
better if the pair involved the same object in two different states,
which manifested in increased speed for normal objects and increase
accuracy for distorted objects. With respect to correctly rejecting
rearranged pairs, participants were relatively faster and more accurate
when they had originally studied pairs depicting the same object in
different states, across both normal and distorted objects. That these

qualitative patterns hold for both normal and distorted objects sug-
gests that it is due in part to perceptual features of the objects that are
preserved in distortion, as opposed to semantic features which are not.

One qualitative result that is more apparent among normal than
distorted objects is the pattern of responding across different kinds of
rearranged pairs. Rearranged pairs depicting the same object in dif-
ferent states are correctly rejected more often than rearranged pairs
depicting two different objects; and rearranged pairs depicting two
different objects but in the same state are correctly rejected more
frequently than ones showing the different objects in different states.
Thus, at least for nondistorted object stimuli, when there is some
degree of similarity between objects in a rearranged pair (either same
object or same state) it is easier to correctly reject.

Verbal Stimuli

The mean proportions of positive recognition responses and me-
dian correct response times for word stimuli are shown in Figure 13.
A 6 (three different study formats from two types of quartet) � 6
(different test pairs within each quartet) factor within-subjects
ANOVA on probability of giving a positive response in the verbal
conditions finds main effects of both study, F(4.4, 342.7) � 10.9, p �
.001, and test format, F(4.8, 376.3) � 10.8, p � .001, as well as an
interaction between them, F(9.74, 759.6) � 71.4, p � .001. The same
analysis on median correct response time also finds main effects of
study, F(3.9, 124.7) � 18.6, p � .001, and test, F(4.1, 132.2) � 6.6,
p � .001, format as well as an interaction between them, F(11.4,
363.3) � 8.5, p � .001.

In terms of correct recognition of intact pairs, compound word
pairs, orthographic neighbors, and synonyms are all correctly
recognized more often and more quickly than unrelated intact
pairs. Among rearranged pairs, orthographic neighbor test pairs are
correctly rejected more often and faster than unrelated rearranged
pairs. There is no substantial differences between rearranged syn-
onym pairs and unrelated test pairs in terms of either speed or
accuracy. Curiously, there is a consistent bias to incorrectly rec-
ognize compound word pairs relative to unrelated word pairs, and
compound word pairs also take longer to correctly reject than
unrelated rearranged pairs.

Model and Discussion

Our experiment demonstrates that within-pair similarity affects
associative recognition not just of words and not just when simi-
larity is defined semantically. Indeed, comparing normal with
distorted objects suggests that perceptual similarity alone (the
low-level shared features between objects) can aid the encoding of
associative information. Even in the case of verbal stimuli, we find
that “perceptual” similarity in the form of similar orthography (but
not semantics) can be even more effective in promoting strong
associative encoding than semantic similarity (synonymy). As
noted above, this experiment was exploratory in nature, but reveals
much about the factors that affect associative encoding.

The manners in which these factors are found to operate are
consistent with the model we have proposed, as illustrated by the

8 Noninteger degrees of freedom in these analyses result from applying
the Greenhouse-Geisser correction for nonsphericity.

Figure 10. Observed group mean response proportions (points) and
model predictions (lines) across participants from Experiment 3 of Dosher
(1984). See the online article for the color version of this figure.
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fact that the model captures the qualitative, and to a large extent
quantitative, details of our many conditions (see Figures 12 and 13,
with parameters listed in Table 4): When a set of pairs is studied
that yields enhanced intact recognition (e.g., same object-different
state pairs, orthographic neighbor pairs, or compound word pairs),
this same study condition also results in, on average, enhanced
rejection of rearranged pairs that “break” the original studied

relationship. This is analogous to the findings summarized in the
introduction that S�E� � S�E� and S�Eu

� � S�Er
� and indicates

that shared item features allowed for encoding of more associative
features during study, leading the resulting memory traces to be
more easily differentiated from rearranged pairs. By comparison
with Figure 6b, these conditions are those in which sIntact is high
but sRearr. is low.

Figure 11. Examples of stimulus quartets used to generate study and test pairs. See the online article for the
color version of this figure.

Figure 12. Mean proportion of positive recognition responses and median correct response time for object
stimuli (error bars denote 95% within-subject confidence intervals). X marks show model predictions, with
parameter values given in Table 4. See the online article for the color version of this figure.
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Indeed, the estimated similarity parameters in Table 4 comport
with this intuition: Among both normal and distorted objects,
similarity is highest between the same object in different states
and lowest for different objects in different states. Among words,
orthographic neighbors exhibit higher similarity than synonyms. It
should be noted that the similarity parameter in our model does not
differentiate between dimensions of similarity—instead, this pa-
rameter reflects the degree of shared features of the type that
participants happened to use to encode the pairs in our experiment.
If, for example, more emphasis was placed on semantic than
orthographic similarity, we might expect synonyms to have higher
estimated similarity parameters, as we found when fitting our

model to the data of Dosher (1984) and Dosher and Rosedale
(1991) in which similarity was only in terms of semantics.

By contrast, when items in rearranged pairs are similar to one
another to the same extent as items in intact pairs—such as when
compound words were studied and different compound words
were tested—there remains a bias to give a positive response to
those rearranged pairs. Again looking to Figure 6b, these are
situations in which both sIntact and sRearr. are high (according to
Table 4, similarity for members of a compound word was less than
for orthographic neighbors but higher than for synonyms), wherein
the benefit one would normally get from having high intact pair
similarity is overcome by the similarity within the rearranged pair.

Figure 13. Mean proportion of positive recognition responses and median correct response time for verbal
stimuli (error bars denote 95% within-subject confidence intervals). X marks show model predictions, with
parameter values given in Table 4. Labels are given using examples of each type of study/test pair. See the online
article for the color version of this figure.

Table 4
Model Parameters Used to Fit Average Response Proportions and Median Response Times Across Conditions

Stimuli u cS pA s1 s2 s3 A0 b �0 	0 


Normal objects 0.58 0.94 0.46 0.47 0.30 0.26 58.4 0.53 0.424 0.456 0.017
Distorted objects 0.55 0.84 0.63 0.81 0.60 0.54 11.7 0.58 0.557 0.502 0.031
Words 0.45 0.89 0.81 0.40 0.52 0.33 37.5 0.57 0.541 0.561 0.020

Note. Estimation was via quantile maximum likelihood (Heathcote, Brown, & Mewhort, 2002) and included both correct and error response times in each
condition. For normal and distorted object stimuli, the three similarity parameters refer to: s1 is for same object, different states; s2 is for different objects,
same states; and s3 is for different objects, different states. For word stimuli, similarity parameters refer to: s1 is for compound words; s2 is for orthographic
neighbors; and s3 is for synonyms.
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In the Introduction, this was summarized qualitatively as the
finding that S�Er

� � S�Eu
�, thus bringing in the final set of

conditions that had been previously studied in this paradigm. We
note that participants did not treat compound-forming words as a
single unit (i.e., with s � 1), likely because of the manner of
presentation; the words were visually separated and were not
guaranteed to have been presented in the canonical compound
order, for example, “star-dust” was just as likely as “dust-star.”

Finally, it is worth noting some differences in the estimated
parameter values between normal and distorted objects (see Table
4). The lower accuracy for distorted versus normal objects appears
largely attributable to differences in cS, the probability of correctly
storing a feature conditional on it being transferred from working
memory to a long-term memory trace, rather than the probability
of transfer u. In addition, similarity parameters are higher across
the board for distorted versus normal objects, likely because the
distortion removes semantic features that would otherwise distin-
guish between images of objects from the same category. Partic-
ipants evidently adjusted their response criteria (A0) to be closer
together for distorted versus normal objects, thus putting their
response times roughly on par between normal and distorted
objects (responding would be much slower for distorted objects
without this criterion adjustment).

General Discussion

We have presented the first unified theory of the relationship
between similarity and encoding of episodic associations. Similar
events share features, which causes the otherwise separate chan-
nels through which they would be encoded to become correlated.
This correlation, in turn, leads to both an initial bias to recognize
the pair of events as having been seen before as well as additional
capacity to encode associative features which eventually makes the
association more distinct. This relationship between similarity and
associative encoding is found not just in memory for verbal asso-
ciations (Dosher, 1984; Dosher & Rosedale, 1991; Greene &
Tussing, 2001), but as a new experiment shows, in memory for
both concrete and abstract visual stimuli as well. Neither is the
relationship confined to semantic similarity, for shared perceptual/
orthographic features have the same effect. Finally, the relation-
ship is found even in experimental settings where similarity varies
only incidentally, and extends to other memory tasks involving
associative information (Cox et al., 2018).

Our quantitative model of associative encoding and recognition
is a direct extension of the dynamic recognition model of Cox and
Shiffrin (2017), coupling the retrieval and decision making mech-
anisms of that model with a dynamic model of encoding to account
for the quantitative details of both speed–accuracy trade-off and
response time. This model is also the first to embody the qualita-
tive architecture of associative recognition delineated by Cox and
Criss (2017). This model illustrates how, starting from a model of
recognition dynamics based on the gradual sampling and accumu-
lation of features over time into working memory (cf. Brockdorff
& Lamberts, 2000), the effects of similarity on associative encod-
ing and recognition arise naturally from a single construct (repre-
sented by the parameter s) that represents the degree to which
similar items share features. In this general discussion, we touch
on implications of this account for other memory models and

paradigms, for control processes involved in encoding, and for
learning over extended periods.

Other Memory Models and Tasks

Although we have formulated our quantitative model of the
dynamics of associative encoding and recognition in terms of a
particular modeling framework (Cox & Shiffrin, 2017) based on
feature sampling (Brockdorff & Lamberts, 2000) and global
matching (Shiffrin & Steyvers, 1997), we believe the core ideas
behind the model can and should inform other memory models,
including those for tasks beyond recognition.

Recall tasks. This article largely focused on recognition, but
analyses of the data from Cox et al. (2018) presented in Appendix
C illustrate that within-pair similarity, whether semantic or ortho-
graphic, leads to advantages in both cued and free recall, just as it
does on associative recognition. This comports with prior analyses
of these data, which found strong correlations between among all
memory tasks in terms of both individual performance and in how
performance was affected by item-specific information (Cox et al.,
2018). Although recall and recognition are sometimes viewed as
separate and independent processes (Atkinson & Juola, 1974;
Mandler, 1980), the fact that study pair similarity has similar
effects on both associative recognition and cued recall suggests
that these two tasks actually rely on the same underlying memory
representations (e.g., Gillund & Shiffrin, 1984) just with different
available cues (Humphreys, Bain, & Pike, 1989). Meanwhile, the
benefits of study pair similarity for free recall stem in large part
from the fact that participants tended to recall items in their studied
pairings, essentially treating free recall like cued recall, but where
participants generate the cue used to retrieve the other item from a
pair (e.g., Raaijmakers & Shiffrin, 1981). Finally, there was min-
imal effect of within-pair similarity at study on subsequent single-
item recognition (see Appendix C), meaning the observed benefits
of similarity largely accrued to the encoding of associative rather
than item-specific information. This final result is consistent with
our model’s assumption that the free capacity afforded by shared
item features is chiefly devoted to encoding more associative
information.

Given that associative recognition and recall are both affected
by similarity in similar ways, it is possible to imagine a straight-
forward extension of our model to cued recall (for a similar
suggestion, see the Discussion of Cox & Shiffrin, 2017). This
extension involves the incorporation of an activation-based sam-
pling mechanism for traces from memory (Diller, Nobel, & Shif-
frin, 2001; Gillund & Shiffrin, 1984; Lehman & Malmberg, 2013;
Malmberg & Shiffrin, 2005; Shiffrin & Steyvers, 1998), similar to
the notion of “echo content” in MINERVA2 (Hintzman, 1984,
1986, 1988). Say the pair AB had been studied and Item A is
presented as a cue for recall. As the representation of A is being
built up in working memory, this representation activates different
traces in memory to differing degrees, as described above, though
the trace containing A will tend to be more active than others on
average. Perhaps at intervals during this sampling process, or
perhaps only after working memory is saturated with features, a
trace is sampled from memory in proportion to its current level of
activation. Any associative features stored with that trace are then
used to activate other traces in memory, which will tend to favor
traces containing the same associative features (e.g., B). A second
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trace is then sampled based on the activation from associative
features and is used as the basis for the recall response (likely with
some kind of clean-up or recovery mechanism operating on the
sampled trace; Diller et al., 2001; Raaijmakers & Shiffrin, 1981).
Although more work is needed to ensure that this extended model
for cued recall is viable, it suggests a way that the same underlying
memory representation may be used across tasks, consistent with
the comparable effects of similarity on both associative recogni-
tion and cued recall. Such an extension could also help explain
how associative asymmetry in cued recall might arise as a function
of differences between the item cues used to retrieve the associa-
tion (Criss, Aue, & Smith, 2011; Madan, Glaholt, & Caplan,
2010). Finally, this extended model for cued recall could account
for free recall as well, if augmented with additional mechanisms
for selecting cues and terminating the recall period (Lehman &
Malmberg, 2013).

Order memory. Our account of associations posits that they
are represented in a symmetrical fashion, with the same associative
features being stored in the memory traces of all items within an
association (though the features of the items themselves are not
necessarily stored equally). Nonetheless, individuals generally ex-
hibit some memory for the temporal or spatial order of these items,
which would seem to imply that associations need an asymmetric
component. However, the fact that increasing item similarity
within an association leads to poorer order memory (Greene &
Tussing, 2001) suggests that order is not encoded among associa-
tive features; if it were, because associative encoding is enhanced
by item similarity, one would expect superior order memory for
pairs of similar items. We suggest that order is largely encoded as
a type of item feature, in the same way that other aspects of
presentation like modality are bound to items (Cox & Shiffrin,
2017). For example, if Item A is presented on the left and Item B
on the right, features pertaining to those spatial locations would be
encoded for each item alongside their other perceptual and con-
ceptual features (though perhaps to a lesser extent).9 This would
help explain why order and associative memory are only moder-
ately correlated (Kato & Caplan, 2017), because although they rely
on different types of features, the quality of associative encoding
still depends on the quality of item feature encoding (i.e., if order
features are encoded, they can take part in conjunctions that lead
to the encoding of associative features).

Associations are not strictly independent of items. A core
aspect of our model that enables it to fit the data from our
experiment and to make the qualitative prediction that S�Er

� �
S�Eu

� is that associations themselves can be similar to one another
in proportion to the similarity of the items that are being associ-
ated. This arises from the assumption that associative features
represent conjunctions of specific pairs of item features, such that
if Items B and B’ share a proportion s of their features, then the
associations AB and AB’ will also share a proportion s of their
features (because the A features are shared between AB and AB,’
all that matters is the difference in features between B and B’).
This is consistent with models that allow associations to be built up
from item representations, such as through outer products or con-
volutions (Chubala & Jamieson, 2013; Metcalfe Eich, 1982; Mur-
dock, 1982), but is not consistent with models that represent
associations as links with no inherent relational structure (Ander-
son & Bower, 1973; Raaijmakers & Shiffrin, 1981) unless item
similarity allows for activation to spread to nodes that are not

linked by purely associative links (Sirotin, Kimball, & Kahana,
2005). A dependence of associations on item information is also a
property of concatenation models of association, which represent
associations by appending item representations to one another
(e.g., Diller et al., 2001; Hintzman, 1984; Lehman & Malmberg,
2013; Shiffrin & Steyvers, 1998), but concatenation leads to some
technical and theoretical problems described in the next section
that are avoided by way our model represents associations.

We have, however, left intentionally ambiguous the exact nature
of the associative features that arise from item-feature conjunc-
tions. It is likely that, as in CHARM (Metcalfe Eich, 1982) or the
associative features described by Criss and Shiffrin (2004a), the
associative features we posit are of a different “type” than item-
specific features, that is, that they are represented via a different
substrate. Nonetheless, it is still ambiguous whether associative
features are built from item features, perhaps literally representing
conjunctions, or if they are built on item features, such that they
are the result of an elaborative process that takes item-feature
conjunctions as input. For example, a conjunction of features
between “cat” and “dog” may lead to the formation of an associa-
tive feature by activating the shared semantic feature “housepet”
that might not have been activated by either of those words alone;
in this case, although the conjunction enables the encoding of an
associative feature, the feature does not literally represent the
conjunction. We are not in a position to distinguish these possi-
bilities at the moment, but suggest that this is a potentially fruitful
avenue for future research.

Representation of similarity and association. Our approach
distinguishes the concepts of similarity and association by defining
similarity as shared features of an item’s representation (derived
from perception and/or semantic memory) while associations are
emergent features shared because two items were processed in
working memory at the same time. Thus, in a sense, both similarity
and association rely on features that are shared, the difference
being why they are shared.

Other feature-based models of memory have represented asso-
ciations by concatenating the features of individual items (Diller et
al., 2001; Hintzman, 1984; Lehman & Malmberg, 2013; Shiffrin &
Steyvers, 1998). This leads to some technical problems, however:
First, if one wants to access the item information in each trace, one
needs to do so twice (for each item-position within the trace);
second, if one wants to perform associative recognition, one has to
compute the match for each trace twice (for each ordering of the
items). While these technical problems are inelegant, they are not
insurmountable. More important is the fact that this representation
does not allow for associative strength to vary—items are either
concatenated (associated) or not, meaning there is no way for this
representation to capture the relationship between item similarity
and associative strength. By representing pairs as separate memory
traces joined to either a greater or lesser extent by shared context
and associative features, our model is capable of representing

9 Often, spatial location is described as being an aspect of “context,” in
that it is an aspect of how something is encountered, rather than the content
of what is encountered. In our model, however, a “context feature” is one
that is present in the environment prior to the encoding of any items/
associations. Because spatial order information is not available in the
absence of the items, order does not fall under the heading of “context” as
used in our model.
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different degrees of associative strength while preserving the sep-
arate nature of the items themselves.

Associative strength is an important construct within network
models of memory (Reder et al., 2000; Sirotin et al., 2005), where
associations are links between nodes that represent items or con-
cepts. Within such models, it is also common to treat similarity as
a type of associative link, such that similar items may be linked not
just by episodic associations formed during co-occurrence but by
semantic (or other) associations derived from knowledge. As noted
above, the results we reviewed and presented here argue against
the notion that similarity and episodic association are independent
in the way this representation might imply, requiring network
models to incorporate a mechanism by which episodic associations
were stronger and more distinctive between items that had stronger
semantic (or other) similarity-based links. One such mechanism,
closely related to the one we have proposed based on correlated
channels, is the working memory capacity construct in the source
of activation confusion (SAC) model (Buchler, Faunce, Light,
Gottfredson, & Reder, 2011; Reder et al., 2000). If it is assumed
that episodic links between items with stronger semantic links
require less working memory capacity to encode, this would be a
way for a network model to allow for dependence between these
two types of link. But this would still leave the question of why less
capacity was used, a question that our model answers in terms of
correlated channels and shared item features.

Importance of dynamics. The most central tenet of our ap-
proach to memory is that it is crucial to have an explicit account of
how a memory probe is built up over time and how this, in turn,
affects the state of memory in a dynamic fashion. Although pop-
ular evidence accumulation models, like diffusion (Ratcliff, 1978;
Ratcliff & Rouder, 1998) or accumulator models (Brown & Heath-
cote, 2008), are capable of fitting speed–accuracy trade-off func-
tions and response time distributions in a wide variety of settings,
they are largely based on the assumption that the dynamics within
any given trial are determined by a set of parameters that are
constant for that trial (though they may vary between trials). More
elaborate models are therefore required to explain how decision
states might change during the course of a trial (e.g., Busemeyer &
Townsend, 1993; Cohen & Nosofsky, 2003; Diederich, 2003;
Holmes, Trueblood, & Heathcote, 2016; White, Ratcliff, & Starns,
2011), as they do during associative recognition (Gronlund &
Ratcliff, 1989; Rotello & Heit, 2000) and other types of recogni-
tion memory tasks (e.g., Hintzman & Curran, 1994; McElree,
Dolan, & Jacoby, 1999).

To date, most models of memory have focused on explaining the
final outcome of retrieval, like a “yes” or “no” decision or a recall
response, and less on the dynamics of the processes leading up to
that outcome (but see Diller et al., 2001; Malmberg, 2008; Nosof-
sky, Little, Donkin, & Fific, 2011). While some success is possible
by using memory models to define parameters which are then
fixed during a secondary evidence accumulation stage (e.g., Hock-
ley & Murdock, 1987; Ratcliff, 1978; Sederberg, Howard, &
Kahana, 2008), such a model does not explain the dynamics of
encoding and retrieval, treating a crucial aspect of these memory
processes as being inside a “black box” (see also Cox & Shiffrin,
2017). We contend that it is time for theories of memory to
embrace the dynamics of encoding and retrieval, not as a second-
ary “add-on,” but as a fully integrated set of mechanisms; doing so
helps lead to novel insights such as that proposed in this paper

regarding the dynamic nature of associative encoding (for an
example of how “opening the black box” has been helpful in
understanding vision; see P. L. Smith & Ratcliff, 2009).

Explicit models of encoding. Another aspect of memory that
is largely side-stepped by current theories is the nature of encoding
(cf. Atkinson & Shiffrin, 1968). Because most theories of memory
focus on the retrieval stage, they assume that the contents of
memory are given. Core to our model is an explicit—though by no
means complete—account of encoding, and just as we believe is it
useful to embrace the dynamics of retrieval, we believe it is
important to more seriously consider encoding processes as mem-
ory theory develops. Explicit accounts of encoding can help refine
or refute the distributional assumption of memory models (Johns
& Jones, 2010). Paired with tight control of experimental stimuli,
an explicit model of encoding helps reveal what information from
an event is preserved or distorted in memory (Sekuler & Kahana,
2007).

An explicit model of encoding also helps explain why Dosher
and Rosedale (1991) found that response dynamics were similar
between associative recognition (as described above) and between
relatedness judgments, in which participants had to judge whether
two items were semantically related rather than whether they had
been studied together. If relatedness judgments are based on track-
ing the proportion of features shared between items in a pair, then
such judgments are based on encoding the pair in working memory
via the same feature sampling process that drives associative
recognition judgments, explaining their similar dynamics.

Events, memory traces, and hierarchical structure. Shared
by instance, exemplar, and multiple-trace theories of memory is
the notion that there is a one-to-one correspondence between
“events” and traces/exemplars stored in memory (e.g., Hintzman,
1984; Logan, 1988; Nosofsky, 1986). This picture grows some-
what more complicated when the content of an event is repeated,
for example, when an item occurs multiple times on a study list; to
explain the beneficial effects of repetition, many multiple-trace
theories assume that each instance of an item contributes to a
single growing memory trace that becomes enriched (“differenti-
ated”) with each encounter (Kiliç, Criss, Malmberg, & Shiffrin,
2017; McClelland & Chappell, 1998; Shiffrin, Ratcliff, & Clark,
1990; Shiffrin & Steyvers, 1997). This complicates the simple
one-to-one event-trace mapping, because now multiple events
(each occurrence of the same item in the same context) are stored
in a single trace. One could, alternatively, view repetitions as
resulting in the storage of multiple traces whose contents are
strongly correlated with one another. Not only does this help
resolve the conceptual difficulty of combining multiple events into
a single trace, it connects to our model of associative encoding
which is based on the notion of storing multiple correlated traces:
Although repetitions do not necessarily lead to the encoding of
additional features beyond those of the item itself—with the po-
tential exception of features related to “recursive reminding” when
a repetition is correctly detected (Hintzman, 2010)—spontaneous
retrieval of prior traces may cause the trace formed from a repe-
tition to be correlated with—or identical to—that formed from
prior instances of the item in the same context.

By allowing memory traces to be partially correlated with one
another, our model allows for representing a kind of hierarchical
structure, where each item in a pair can be viewed as separate
events to the extent that only item-specific features are focused on
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but the whole pair is an “event” if shared associative and contex-
tual features are focused on. Could this hierarchy extend further
upward? To an extent, it does by virtue of having shared context
features across traces encoded from the same list, though one could
imagine extensions of the model that allow for a slowly changing
context representation over time (e.g., Mensink & Raaijmakers,
1988). More intriguing would be to allow items to persist in
working memory across study trials even without any explicit
pairing, as in the model of Lehman and Malmberg (2013) and
consistent with the operation of a rehearsal buffer (Atkinson &
Shiffrin, 1968; Davelaar, Goshen-Gottstein, Ashkenazi, Haar-
mann, & Usher, 2005). If associative features were encoded across
temporally adjacent trials in the same way our model says they are
encoded within a pair, this would cause temporally adjacent mem-
ory traces not only to share associative features, but to become
more correlated with one another. In this way, associative features
would act like a slowly evolving representation of temporal con-
text (Howard & Kahana, 2002) that pulls together temporally
adjacent events and enables the encoding of another form of
hierarchical event structure. Given this potentially deep relation-
ship between temporal contiguity and similarity, studying how
these factors interact with one another to imbue event memory
with structure seems important for deepening memory theory (for
a recent example of this kind of work in recall, see Polyn, Er-
likhman, & Kahana, 2013).

Forced-choice associative recognition. An distinct challenge
for all models of associative recognition, including the one we
have presented, comes from certain kinds of forced-choice asso-
ciative recognition tasks (Clark, Hori, & Callan, 1993). When
forced to choose which of three pairs is intact versus rearranged,
participants are more likely to be correct if the pairs contain no
overlapping members than if they all contain one shared item (e.g.,
AB-AD-AF vs. AB-CF-ED). This is a challenge because, if par-
ticipants make these decisions by comparing the relative memory
signals from each pair and picking the biggest, the correlated
memory signals from pairs with overlapping members (AB-AD-
AF) should reduce the variance of the decision variable and enable
higher, not lower performance (Hintzman, 1988; Tulving, 1981).
Of course, it could be that participants do not use this relative-
strength rule in the first place, in which case these results could be
explained by a different test strategy. An explanation based on test
strategy would be consistent with the fact that the advantage for
nonoverlapping pairs is greatly reduced when overlapping and
nonoverlapping test trials are mixed rather than blocked (Clark et
al., 1993). For example, if participants used a decision procedure
in which they selected as old the first pair to reach a threshold,
correlations between the three pairs would sometimes cause the
wrong pair to reach threshold earlier; essentially, a step up for the
intact pair can “leak” and turn into a step up for a rearranged pair.
This confusion between associations containing overlapping mem-
bers is related to the notion of associative interference or “fan”
(Anderson, 1974; Wickelgren & Corbett, 1977).

Alternative decision rules. This article has focused on asso-
ciative recognition, in which positive responses logically entail an
exhaustive decision rule.10 Other tasks involving multiple stimuli,
like pair recognition (Clark & Shiffrin, 1987), may allow for other
decision rules, for example, responding “yes” if even one item had
been studied, regardless of associative information. It is clear that
individuals can adapt their decision rules in response to these and

other more complex task demands as needed (Buchler et al., 2011,
2008), so we do not claim that all recognition decisions must be
exhaustive across all tasks. Nonetheless, we expect that shared
features between items will lead them to be processed in a corre-
lated manner with attendant consequences for recognition.

Dissimilarity and negative correlations. An intriguing case
of a possible alternative decision rule is offered by Experiment 6
of Greene and Tussing (2001). In this experiment, participants
studied single words but were tested with pairs. One word in each
test pair was always studied, but participants were instructed to
give positive responses only when both words were studied; some
pairs were unrelated and some consisted of antonyms. If partici-
pants are using the ostensibly correct exhaustive decision rule
(respond “yes” only if both items were studied) and if antonyms
were processed in a way that lead to positive correlations between
the two item channels, this would lead to a bias to give more
positive responses for antonym pairs whether or not both items had
actually been studied. This is the same kind of bias that our model
predicts for early processing of similar pairs (for a visual illustra-
tion, see Appendix B), but whereas in our model this bias even-
tually gets counteracted when similarity enables the encoding of
more associative features, this cannot happen in the Greene and
Tussing (2001) experiment. Even if associative features were
encoded during the test trial, they would not affect the match to
memory because participants only studied single words, such that
there would be no corresponding associative features in any of
their memory traces.

In contrast to the prediction of a positive bias from correlated
processing, Greene and Tussing (2001) found a negative response
bias for antonym pairs. Although this could simply indicate that
participants were using an alternative decision rule than the osten-
sibly correct one, within the framework we have presented, an-
other possibility is that antonyms actually lead to negative rather
than positive correlations in this particular test. In other words, it
might be that a focus on dissimilarity between items may lead
them to be processed in a negatively rather than positively corre-
lated manner. A proper experimental contrast between situations in
which similarity or dissimilarity were important would, however,
require careful stimulus design and balancing of task demands.
Antonyms, for example, could be considered “similar” depending
on what semantic features are being attended within the task
context (e.g., “hot” and “cold” both refer to temperature). And
negative correlations between item channels might occur indepen-
dent of similarity/dissimilarity in tasks that promote discrimination
between items rather than the formation of associations (e.g.,
Goldstone, 1996).

Associative information in item-focused tasks. This article
has focused on illustrating how item-level information—specifi-
cally, similarity between items—leads to important consequences
for associative encoding by allowing similar items to be processed
in a correlated manner. Associative information also has conse-
quences for tasks that depend on item memory, illustrating that
item memory is more successful the more similar the associative
context of retrieval is to that at study (Tulving & Thompson, 1971,
1973). The presence of these effects suggests that encoding of

10 Of course, not all participants employ the most logical rule for the task
(e.g., Cox & Criss, 2017).
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associative features occurs to at least some extent even in tasks that
do not ostensibly require them. For example, Tulving and Thomp-
son (1971) found that recognition of words studied alone was
impaired when the word was paired with an unstudied word,
suggesting that the novel associative features (relative to those at
study) dampen the matching item features. Similarly, recognition
of single words is enhanced when presented alongside the words
with which they had been studied relative to novel words (Tulving
& Thompson, 1971) or even other studied words (Clark & Shiffrin,
1987), illustrating the enhancement that can arise when associative
features encoded at test match those from study.

Attention, Capacity, Automaticity, and Control

The notion of capacity is, of course, central to the account we
have put forth: A core assumption of our model is that working
memory has a fixed capacity for holding unique features, which
must be split between features that represent the context versus the
content of an event. Among content features, we presume that
individuals can set for themselves the proportion of them that is
allocated toward encoding associative rather than item informa-
tion.

We allow that other aspects of capacity allocation may be under
participant control as well. Participants might select different item
features to encode an event, particularly when participants encoun-
ter many trials of the same task. It is natural to assume that, with
experience, participants will attempt to prioritize encoding of
features that lead to better subsequent memory performance. In the
end, because similarity is a function of shared item features, the
degree of similarity—and any benefits similarity might have for
associative encoding—is effectively under partial control of the
participant by virtue of which item features they prioritize for
encoding. We say “partial” control because it is also likely that
some features are encoded in an almost obligatory fashion, as in
the well-known Stroop effect. And although we have not found a
need to allow for differential allocation of context features in our
work thus far, it is entirely reasonable to think that participants can
control this as well, consistent with models that suppose different
limited capacity weights on retrieval cues (Gillund & Shiffrin,
1984; Humphreys et al., 1989; Raaijmakers & Shiffrin, 1981) or
stimulus dimensions (Nosofsky, 1986). To summarize, the manner
in which feature capacity is allocated is under at least some degree
of participant control, but the dynamics of how those features are
sampled and correlated are automatic (W. Schneider & Shiffrin,
1977; Shiffrin & Schneider, 1977). In other words, controlled
capacity allocation “sets the stage” for subsequent feature sam-
pling processes which then proceed automatically.

It is important to note, however, that the capacity limitations in
our model may not reflect the total amount of information that may
be held simultaneously in working memory, but instead the total
amount of information that may be used to probe memory. In other
words, working memory may be able to contain more information,
but at any given time the participant can select only a subset for
use in activating traces in memory. This interpretation is consistent
with theories of working memory that differentiate between infor-
mation that is and is not under the focus of attention (e.g., Ober-
auer, 2003; Oberauer & Lin, 2017; Olivers, Peters, Houtkamp, &
Roelfsema, 2011), where only information in the focus of attention
acts as an effective retrieval cue. This interpretation also leaves

open the possibility that participants may shift the focus of their
attention to emphasize different kinds of features during the pro-
cess of retrieval, leading to changes in the resulting memory signal
(this idea was also present in Cox & Shiffrin, 2017).

The possibility of shifting attention to different features during
retrieval also opens the possibility that associative encoding may
be more automatic than one might expect. Although attention is
often assumed to be required for binding items together (e.g.,
Treisman & Gelade, 1980), it might be that associative features
arise in working memory as a more-or-less automatic consequence
of the joint processing and conjunction of item features. In that
case, while the dynamics of associative encoding would still op-
erate as we have described, the “capacity” that is invoked in our
theory is not the capacity of working memory as a whole, but of
the focus of attention within the features held in working memory.
That said, capacity limitations likely still rear their head when it
comes to storing the contents of working memory in long-term
memory, where only those features and/or items held in the focus
of attention have a chance of being transferred (Atkinson &
Shiffrin, 1968). A role for attention is, then, still important for
explaining why attending to item information impairs associative
memory (Hockley & Cristi, 1996)—even if associative features
might have been encoded in working memory during study, they
were not stored in long-term memory by virtue of not being in the
focus of attention.

From Novel to Well-Learned Associations

As noted above, our model supposes that both similarity and
episodic associations are represented as shared features, just
that these features arise from different processes. Shared item
features are presumed to come from relatively rapid perception
and knowledge access whereas shared associative features arise
as these rapidly available item features get conjoined. It is easy
to imagine, though, that repeated exposure to a pair (or larger
set) of items will lead those associative features to reside in
semantic memory, rather than needing to be built up “on the
fly” during encoding. This kind of transfer from episodic to
semantic memory has been implicated in word learning (L. B.
Smith, Suanda, & Yu, 2014) and perceptual expertise (Gauthier
& Tarr, 1997; Nelson & Shiffrin, 2013; Shiffrin & Lightfoot,
1997) and is associated with the phenomenon of “unitization”
(LaBerge & Samuels, 1974), and is consistent with the notion
that events are encoded in hippocampus using features derived
from the cortex which, over longer timescales, learns new
features from repeated events (e.g., Kumaran & McClelland,
2012; McClelland, McNaughton, & O’Reilly, 1995; Norman &
O’Reilly, 2003). And while unitization and associative memory
may be served by different brain regions (Staresina & Davachi,
2010), these regions may differ only in their relative complexity
rather than in any qualitative sense (Cowell, Bussey, & Saksida,
2010). Alternatively, this transition from relatively slow to fast
associative encoding— especially early in learning—might re-
flect the increased availability of prior episodes which could
themselves be retrieved (via an appropriate recall mechanism,
see above) and used to encode the repeated pair (Logan, 1988).

Either by retrieval of a prior episode or transfer to semantic
memory, the result is that repeated exposure allows associative
features to be available for encoding earlier, such that they are
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effectively item features in their own right, highlighting how
experience can alter the encoding of event memories and event
associations. The specific mechanism of association we de-
scribe here, based on correlated processing channels, has been
implicated in successful learning of category representations
(Goldstone, 2000), suggesting a link between our account and
learning over a longer timescale. In addition, a gradual shift
from “associative” to “item” features is consistent with the fact
that associative information can be retrieved at a greater rate the
more often an association is encountered (D. W. Schneider &
Anderson, 2012), as one would expect if the relevant features
became available earlier and earlier. It may also help explain
why memory for well-learned associations demonstrates stron-
ger order dependence (e.g., “dog-and-pony” vs. “pony-and-
dog”) than relatively novel associations (Caplan, Boulton, &
Gagné, 2014): Memory for novel associations depends on the
formation and encoding of associative features whereas well-
learned associations are treated like items, with their attendant
ordinal features (see above).

Concluding Remarks

We have presented a dynamic model of item and associative
encoding that provides the first complete account of how sim-
ilarity between items affects memory for and recognition of
associations. In addition to explaining this relationship, which
is apparent across a wide array of stimulus materials and task
types, this account is illustrative of how incorporating dynamics
and encoding mechanisms can help refine theories of memory
and forge connections between different cognitive domains.
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Appendix A

Systems Factorial Signatures

Cox and Criss (2017) conducted an analysis of associative
recognition using tools from Systems Factorial Technology
(Townsend & Nozawa, 1995), specifically, the survivor interaction
contrast (SIC) function and capacity assessment function (Altieri,
Townsend, & Wenger, 2014; Townsend & Altieri, 2012).

Although the reader is referred to the original source for addi-
tional detail on the procedures (see also Cox & Criss, in press), the
experiment involved a double factorial manipulation of item
strength and associative strength. Participants studied 16 pairs of
images in each study phase, some of which had their item strength
boosted by virtue of having their component images repeated
during study, some of which had higher associative strength by
virtue of the pair itself being repeated during study, and some of
which had both high item and high associative strength. This
resulted in four types of study pair from the 2 � 2 combination of
high/low item and associative strength, which we denote using
subscripts (i.e., IHAL indicates high item strength and low associa-
tive strength).

At test, participants were given sixteen recognition trials in each
block. Four trials presented intact pairs, one from each combi-
nation of item and associative strength; we denote these as IH

�AH
�,

IH
�AL

�, IL
�AH

�, and IL
�AL

�, where the superscript � indicates a match
between that dimension (either item or associative) and what had
been studied. Rearranged pairs from each strength level were also
tested, denoted IH

�AH
�, IH

�AL
�, IL

�AH
�, and IL

�AL
�, where the super-

scripts I�A� indicates that although the items in each test pair
match something that had been studied, the particular association
was not. We also tested intact pairs where the component images
were replaced by different (but similar) parts of the same image,
hence these are I�A� pairs (intact associations but mismatching
items, again presented at all four combinations of item and asso-
ciative strength). Finally, we tested rearranged pairs with swapped-
out images, yielding four I�A� pairs for each combination of item
and associative strength.

We computed SIC functions based on the distributions of cor-
rect response times to each type of test pair (I�A�, I�A�, I�A�,
and I�A�) using the 2 � 2 factorial combination of item and
associative strength levels within each pair type. We also com-
puted capacity assessment functions that compared performance in
the congruent conditions I�A� and I�A� to those in the incon-
gruent conditions I�A� and I�A� that assess the degree to which
performance is superior to (assessment function � 1) or inferior to
(assessment function � 1) the performance that would be expected
if item and associative information were combined in parallel
independent capacity-unlimited channels. As demonstrated in Cox
and Criss (2017) and Eidels, Houpt, Altieri, Pei, and Townsend
(2011), these functions take characteristic forms depending on the
architecture of the processes that produce responses in this double
factorial paradigm. Thus, a correct model should produce qualita-
tively similar SIC and assessment functions to those we observed.

(Appendices continue)
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We reproduce these observed functions in Figures A1a and A1c
and those predicted by our model are shown in Figures A1b and
A1d, illustrating that our model produces the same qualitative
signatures: an SIC with a single positive peak for I�A� pairs and
either a flat or single negative peak for other pairs and an increas-
ing capacity assessment function for correct acceptance of intact
pairs but a decreasing one for correct rejection of rearranged pairs
(Figure A2 illustrates that the model also produces the same
pattern of response probabilities and response times). Owing to the
fact that repeating whole pairs likely increased storage of item-
specific as well as associative features, we estimated different

storage probabilities uI for item information across each level of
item and associative strength (uI

HH, uI
HL, uI

LH, and uI
LL), but only two

levels of storage probabilities for associative features, one for
repeated pairs (uA

H) and one for nonrepeated pairs (uA
L). We also

constrained uI
LL � uA

L to ensure model identifiability, as otherwise
these parameters would trade-off with the proportion of encoding
capacity allocated to associative features (pA). In addition, we
estimated a similarity parameter � that represents the proportion of
features shared between two segments of the same image (such
that the proportion of associative features shared between I�A�

and I�A� pairs is �2).

(Appendices continue)

a b

c d

Figure A1. Comparison of qualitative SFT signatures observed by Cox and Criss (2017) and those predicted
by our model. Model parameters were uI

HH � 0.65, uI
HL � 0.48, uI

LH � 0.59, uI
LL � uA

L � 0.30, uA
H �

0.45, cS � 0.89, pA � 0.38, � � 0.71, A0 � 32.7, b � 0.55, �0 � 0.286, 	0 � 0.357, 
 � 0.017. (a) Observed
survivor interaction contrast (SIC) functions. (b) Predicted survivor interaction contrast (SIC) functions. (c)
Observed capacity assessment functions. (d) Predicted capacity assessment functions.
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Appendix B

Decision Bias From Correlated Channels

This appendix contains a visual illustration (Figure B1) of how correlations between channels lead to a bias to give a “yes” response
under an exhaustive decision rule.

(Appendices continue)

Figure A2. Comparison of observed and predicted (red X’s) response probabilities and response times to data
from Cox and Criss (2017). Error bars depict 95% within-subjects confidence intervals about the mean. Model
parameters are listed in the caption to Figure A1. See the online article for the color version of this figure.

Figure B1. Correlations between signals in each channel change the amount of probability present in each
quadrant. Under an exhaustive decision rule in which “yes” responses can only be made when both signals are
in the upper right quadrant (i.e., both greater than a threshold), correlations lead to a positive response bias. See
the online article for the color version of this figure.
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Appendix C

New Analyses of Cox et al. (2018)

The account we propose asserts that any kind of similarity
between items should enable greater encoding of associative in-
formation between those items. Although our experiment in the
main text extended the initial results of Dosher (1984), Dosher and
Rosedale (1991), and Greene and Tussing (2001) to perceptual as
well as semantic similarity and to nonverbal as well as verbal
stimuli, we wished to see whether these effects are specific to the
associative recognition paradigm or to experiments in which sim-
ilarity and/or relatedness is explicitly varied (perhaps as a function
of special strategies participants adopt in such circumstances). In
this appendix, we present a novel analysis of data from a large-
scale multi-task memory experiment (Cox et al., 2018) that, due to
its scale, enables us to study the effects of similarity on memory in
tasks beyond associative recognition even when similarity is not
explicitly manipulated.

The data that we analyze come from a study reported by Cox et
al. (2018) and are available online via the Open Science Frame-
work (https://osf.io/dd8kp/). Although the reader is referred to the
original paper for complete details of the methods, we summarize
them here: 453 participants11 took part in three separate blocks of
four different episodic memory tasks—single-item recognition,
associative recognition, cued recall, and free recall—as well as
lexical decision. The study phase of each memory task (not lexical
decision) involved studying a list of 20 word pairs. Stimuli for all
tasks were drawn from the same pool of 924 words, with the
assignment of words to each block of each task randomized for
each participant under the constraint that no word appeared in
more than one study-test block. Single-item recognition required
that participants decide whether or not a single word was among
the forty they had studied in the most recent study phase. Asso-
ciative recognition was the same as throughout this article, with
participants deciding whether a given pair of words had been
presented together (intact) or as part of different pairs (rearranged)
on the preceding study list. In each trial of cued recall, participants
were given one word from a study pair and had to report (type) its
study partner. In free recall, participants were asked to type as
many single words from the study list as they could remember, but
there was no explicit instruction to report them in pairs.

Because each of these four memory tasks involved the same
study phase—and participants could not predict ahead of time how
their memory would be tested—we can directly compare the extent
to which the similarity between words in each studied pair affects
subsequent memory performance across these different tasks. Ac-
cording to our account, higher similarity between the studied
words should primarily enhance performance in tasks that require
associative retrieval, namely, associative recognition and cued

recall, while similarity should have only a minimal impact on tasks
that primarily entail retrieval of item information, like single-item
recognition and free recall. That said, even single-item recognition
may be helped by high study pair similarity, not because of the
involvement of any associative features at retrieval, but because it
means there is another highly similar trace in memory. A further
complication arises in free recall, where the ability to use previ-
ously recalled words as cues for subsequent recall attempts pro-
vides an opportunity for interitem associations and similarity to
impact performance (e.g., Bousfield, 1953; Kahana, 1996; Raaij-
makers & Shiffrin, 1981).

Measures of Similarity

In our experiment, above, we used pairs of orthographic neigh-
bors and pairs of synonyms. In this analysis, we turn orthographic
and semantic similarity into continuous quantities, as defined
below. Examples of pairs of words with differing levels of each
kind of similarity are provided in Appendix D.

Orthographic (perceptual) similarity. By analogy to the or-
thographic neighbor pairs in our experiment, we can define a
general measure of orthographic similarity based on Levenshtein
distance, a type of edit distance widely used in psycholinguistics
(Yarkoni, Balota, & Yap, 2008). The Levenshtein distance be-
tween two words is the smallest number of letters that would need
to be inserted, removed, or substituted in order to transform one
word into the other. For example, the Levenshtein distance be-
tween “apple” and “apply” is one, because only one substitution
(“e” for “y” or vice versa) is needed to go between those two
words; the distance between “acid” and “acted” is two (replace “i”
with “t” and insert “e”); and between “accounts” and “county” is
three (delete “a” and “c” and substitute “y” for “s”). Note that the
Levenshtein distance is, as the name implies, symmetric because
the edit operations involved are reversible.

We convert the Levenshtein distance LDij between words i and
j into an orthographic similarity value, sij

Orth, according to

sij
Orth � exp��

LDij

7 � (13)

where 7 is a scaling factor that corresponds to the median Leven-
shtein distance between all 924 words in the stimulus set.

11 This number excludes nine participants, also excluded from the orig-
inal analyses by Cox et al. (2018), who always gave the same response in
at least one of the recognition tasks.

(Appendices continue)
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Semantic similarity. We measure the semantic similarity sij
Sem

between words i and j by computing the cosine of the angle
between vector representations of each word i and j computed by
Baroni, Dinu, and Kruszewski (2014).12 We selected these vector
representations, rather than similar ones derived from LSA (Lan-
dauer & Dumais, 1997), HAL (Lund & Burgess, 1996), or
BEAGLE (Jones & Mewhort, 2007), because their cosine similar-
ities had been found to be more strongly correlated with human
semantic judgments across a variety of tasks than these other
options. Nonetheless, just like these other models, the vectors from
Baroni et al. (2014) represent information about the semantic
contexts in which a word is used such that words with more similar
vector representations (that is, with a larger cosine of the angle
between them) are words that tend to be used in similar ways, just
as synonyms or antonyms tend to be used in place of one another.
Although we refer the reader to Baroni et al. (2014) for detail, we
summarize that these representations were derived by optimizing a
400-element vector for each target word that best predicted which
other words would tend to appear within a five-word context
window around that target word, as observed within a large rep-
resentative corpus of English text.

Orthographic and semantic similarity. Prior to analyzing
any correlations between performance across these tasks and
within-pair similarity, we first computed the correlation between
the orthographic and perceptual similarities across all possible
pairs in the set.13 The Pearson linear correlation between these two
similarity measures is r � 0.04, while the Spearman rank corre-
lation is 
 � 0.03, suggesting that orthographic and semantic
similarity are only weakly related across pairs in this set of words
and that each measure provides largely independent information
about similarity.

Binning. For visualization purposes, we divided each similar-
ity measure into five bins according to the quantiles (specifically,
0, 0.2, 0.4, 0.6, 0.8, and 1) of the off-diagonal elements of the
complete 924 � 924 matrices of similarity values across all
stimuli.

Rearranged pairs in associative recognition. When a rear-
ranged pair is presented in associative recognition, we average the
study-pair similarity values for each word in the rearranged pair.

Results

As in our prior analyses of this dataset (Cox et al., 2018), we
excluded trials from the recognition tasks that were exceptionally
short (less than 200 ms) or exceptionally long (longer than 5 s). We
also excluded nine participants who always gave the same re-
sponse (i.e., only “yes” or “no”) in one of the binary response
tasks. The resulting analyses are, therefore, based on data from 453
participants. Correlations between similarity and accuracy and
response time are measured using Kendall’s � rank correlation,
computed for each participant and then averaged, with confidence
intervals obtained via 1,000 bootstrap sampled. The purpose of
these analyses and plots is to illustrate any qualitative effects of
similarity on performance in each task.

Orthographic Similarity at Study

As shown in Figure C1, although there was no consistent effect
of study pair orthographic similarity on single recognition accu-
racy (�� � 0.00, 99% CI [�0.02, 0.02]), there was a benefit for
correct single recognition response time (�� � �0.03, 99% CI
[�0.05, �0.01]). Orthographic similarity at study lead to an in-
crease in the accuracy (�� � 0.03, 99% CI [0.01, 0.05]) and speed
(�� � �0.06, 99% CI [�0.08, �0.04]) of correct recognition of
intact pairs in associative recognition, as well as an increase in the
speed (�� � �0.03, 99% CI [�0.05, �0.01]) but not accuracy (
�� � 0.00, 99% CI [�0.02, 0.03]) of correct rejections of rear-
ranged pairs. Orthographic similarity at study also increased the
rate at which a word was correctly recalled, given its study partner
as a cue (in cued recall; �� � 0.05, 99% CI [0.03, 0.06]), and also
increased the probability that the word would be correctly recalled
on its own (in free recall; �� � 0.01, 99% CI [0.00, 0.03]).

12 Available online at http://clic.cimec.unitn.it/composes/semantic-
vectors.html

13 Items were chosen randomly without replacement for each task for
each participant, so there are some pairs that were never chosen owing to
the combinatorial explosion of possible pairings. Nonetheless, each partic-
ipant encountered a simple random sample of pairs from this set.

(Appendices continue)
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Semantic Similarity at Study

Figure C2 visualizes the effects of study pair semantic similarity
on performance across different memory tasks. There is no con-
sistent effect of study pair semantic similarity on either accuracy
(�� � 0.01, 99% CI [�0.01, 0.03]) or response time (�� � 0.00, 99%
CI [�0.02, 0.02]) in single-item recognition. Like orthographic
similarity, study pair semantic similarity improves the speed
(�� � �0.04, 99% CI [�0.06, �0.02]) and accuracy (�� � 0.02,
99% CI [0.00, 0.04]) of correct recognition of intact pairs in
associative recognition, but has at best a weak effect on speed
(�� � 0.01, 99% CI [�0.003, 0.04]) and accuracy (�� � �0.005, 99%
CI [�0.03, 0.02]) of rejection of rearranged pairs. Study pair semantic
similarity also improves the rate of both cued (�� � 0.07, 99% CI
[0.06, 0.09]) and free (�� � 0.02, 99% CI [0.01, 0.03]) recall.

Comparison of Orthographic and Semantic Similarity

We compared the relative magnitudes of the correlations with
orthographic and semantic similarity by computing the difference
in � values for each participant in each condition and then obtain-
ing the mean difference ��Orth. � ��Sem. and 99% bootstrapped
confidence interval as before. In terms of response proportions,

correlations did not substantially differ for single recognition
(��Orth. � ��Sem. � �0.01, 99% CI [�0.03, 0.02]), intact pair rec-
ognition (��Orth. � ��Sem. � 0.01, 99% CI [�0.02, 0.04]), rearranged
pair recognition (��Orth. � ��Sem. � 0.01, 99% CI [�0.02, 0.04]), or
free recall (��Orth. � ��Sem. � �0.004, 99% CI [�0.02, 0.01]), but the
correlation with orthographic similarity was lower than that for se-
mantic similarity in cued recall (��Orth. � ��Sem. � �0.02, 99% CI
[�0.04, �0.002]).

In terms of response time, the correlation between correct
single-item response time was lower for orthographic than seman-
tic similarity (��Orth. � ��Sem. � �0.03, 99% CI [�0.06, �0.004]);
that is, orthographic similarity was more strongly correlated with
faster (lower) responses than was semantic similarity. Ortho-
graphic and semantic similarity had roughly equivalent corre-
lations with the time for correct recognition of intact pairs
(��Orth. � ��Sem. � �0.02, 99% CI [�0.05, 0.01]) but for correct
rejection of rearranged pairs, the correlation was lower for ortho-
graphic than semantic similarity (��Orth. � ��Sem. � �0.05, 99% CI
[�0.07, �0.02]). In other words, study pair orthographic similarity
was more strongly correlated with faster correct rejections than
was study pair semantic similarity.

(Appendices continue)

Figure C1. Effects of the orthographic similarity between test words and the word they were studied with
across different memory tasks. “Response” indicates a positive recognition response for single and associative
recognition or a correct recall in cued and free recall.
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Associative Grouping in Free Recall

As noted above, associative information may impinge upon free
recall to the extent that participants make use of that information
to cue subsequent responses, essentially turning free recall into a
form of cued recall. To that end, we tabulated the study position
lag between each correct recall and the immediately previously
given correct recall, that is, the lag-conditional response frequency
(Kahana, 1996). In this formulation, a lag of 1 means that the next
response came from the pair that was studied immediately after the
one containing the most recent correct recall; a lag of �1 means
that the next response came from the pair that was studied imme-
diately before the one containing the most recent correct recall;
and a lag of 0 means that the next response came from the same
pair as the one containing the most recent correct recall. As shown
in the left panel of Figure C3, the clear plurality (41%) of recalls
come from the same pair as the most recent correct recall, with the
frequency of transitions to more temporally distant pairs gradually

falling off with a slight forward asymmetry, as is typically found
in free recall (Kahana, 1996). Consistent with this, conditional on
having made a response in free recall, participants’ next recall had
on average a roughly 75% chance of coming from the same pair
(right panel of Figure C3).

Similarity at Test

In the case of associative recognition, we can also investigate
the degree of similarity within each test pair. For intact pairs, this
will obviously be equal to the study pair similarity, but will differ
for rearranged pairs, as shown in Figure C4. While there is no
consistent effect of test pair semantic similarity on accuracy
(�� � 0.01, 99% CI [�0.01, 0.03]) or response time (�� � 0.02, 99%
CI [0.01, 0.03]) for rearranged pairs, test pair orthographic simi-
larity appears to confer an advantage to the speed (�� � �0.04,
99% CI [�0.06, �0.02]) but not accuracy (�� � 0.004, 99% CI
[�0.02, 0.03]) of correct rejection.

(Appendices continue)

Figure C2. Effects of the semantic similarity between test words and the word they were studied with across
different memory tasks. “Response” indicates a positive recognition response for single and associative
recognition or a correct recall in cued and free recall.
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Temporal Distance at Test

Particularly given that pair-based associative structure seems so
important in free recall relative to across-pair temporal distance, it
is interesting to ask whether any effects of temporal distance are
present in associative recognition. We measured this in terms of
the absolute difference in study pair position between items in
rearranged pairs in associative recognition (e.g., if a rearranged
pair consists of an item from the pair in Position 2 and an item
from the pair in Position 5, this is an absolute difference of 3 study
positions). As shown in the left panel of Figure C5, there appears
to be a slight negative correlation between study position differ-
ence and probability of false alarm, though this correlation is weak
(�� � �0.01, 99% CI [�0.04, 0.01]). There is little evidence for an
effect of study position difference on correct rejection response
times (right panel of Figure C5; �� � �0.01, 99% CI [�0.03,
0.01]).

Discussion

These analyses illustrate that similarity plays an important role
in episodic encoding beyond just associative recognition, even
when similarity is not explicitly manipulated. Consistent with prior
work and the predictions of our model, study pair similarity—
whether orthographic or semantic—leads to increased accuracy
and speed of correct recognition of intact pairs as well as increased
speed of correct rejection of rearranged pairs. Semantic similarity
within a rearranged test pair did not have a substantial effect on

performance while orthographic similarity between items in a
rearranged pair improved the speed of correct rejection, consistent
with the results for rearranged pairs that formed synonyms or
neighbors in our new experiment. Beyond associative recognition,
both orthographic and semantic similarity within a study pair
improved the rate of correct cued recall and free recall, while there
was perhaps a slight benefit for item recognition speed from
orthographic similarity.

Relation Between Associative Recognition and Recall

Although sometimes viewed as separate processes (Atkinson &
Juola, 1974; Mandler, 1980), the fact that study pair similarity
improves both associative recognition and cued recall (as well as
free recall) suggests that these two tasks rely on the same under-
lying memory representations (Gillund & Shiffrin, 1984; Lehman
& Malmberg, 2013). Indeed, our prior analyses of these data
showed strong correlations between these two tasks in terms of
both individual performance and in how performance was affected
by item-specific information in both tasks (Cox et al., 2018). That
this close relationship extends to associative information is impor-
tant for memory theory, as it implies that the associative infor-
mation used in recognition is the same or closely related to that
used to generate an associative response in cued recall. Of course,
our model currently contains no mechanisms for generating this
kind of response, but we consider possible extensions in the
General Discussion in the main text.

(Appendices continue)

Figure C3. Total frequency (left) and conditional probability (right) of transitions between study positions in
the sequence of responses in free recall. The conditional probability plot on the right is truncated to focus on
shorter transitions which occur more frequently and therefore yield better probability estimates.
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Implications for Encoding Capacity Allocation

According to our model, the effect of similarity between items
arises from the fact that shared item features can be “collapsed
together,” freeing up additional encoding capacity. We have as-
sumed that this capacity is largely allocated toward associative
features, but logically it is entirely possible that this capacity could
go instead toward encoding additional item-specific (or even con-
text) features. The slight benefit for recognition speed of an item
that accrues from its orthographic similarity to its study partner

could imply exactly this, that the additional capacity aids item
encoding as well. Of course, item recognition may not be a pure
reflection of item-specific memory and associative features may
well infringe upon it (Schwartz, Howard, Jing, & Kahana, 2005;
Tulving & Thompson, 1973); alternatively, as noted in the Intro-
duction, the slight benefit from similarity for item recognition
might just result from the fact that such items get a boost from the
similar item features in the memory trace for their study partner,
even if no associative features arise.

(Appendices continue)

Figure C4. Effects of orthographic and semantic similarity between test words on response probabilities (left)
and response times (right) in associative recognition.
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The Role of Associative Information in Free Recall

We found clear evidence that participants tended to recall studied
items as pairs, in that conditional on recalling one member of the pair,
they were more likely to next recall the other member of the pair
rather than a word from a different study pair. This suggests that
participants in this dataset are, to an extent, treating free recall like
cued recall, using their previous response as a cue for subsequent
recall attempts (Raaijmakers & Shiffrin, 1981). As a result, one would
expect study pair similarity to help free recall as much as it does cued
recall, exactly as we found in these analyses. Of course, this is not to
exclude the possibility that similarity may benefit free recall via
nonassociative routes. If participants are using their previous re-
sponses to cue subsequent ones, then shared features between those
responses and any yet-to-be-recalled words might help activate their
corresponding traces (Kimball, Smith, & Kahana, 2007; Polyn, Nor-
man, & Kahana, 2009; Sirotin et al., 2005). The extra encoding
capacity afforded by shared features might also be allocated toward
encoding extra context features, which could help bind a word to the
list context, allowing context itself to be a more effective retrieval cue
(Raaijmakers & Shiffrin, 1981).

Relative Importance of Orthographic and
Semantic Similarity

Although both orthographic and semantic similarity between
study pairs aided subsequent memory for those pairs, these
results suggest that different kinds of similarity may be more
important for different tasks. Orthographic similarity was more
important than semantic similarity for improving respon-
se times in both single-item and associative recognition,
whereas semantic similarity was more strongly correlated with
cued recall performance than was orthographic similarity. Al-
though orthography is correlated with performance in both
recognition and recall (Cox et al., 2018), recall may rely more
on semantic information because of the need to generate a
verbal response that is not immediately present as part of the
stimulus, in contrast to recognition which may be accomplished
in principle purely on the basis of perceptual features of the
stimulus without recourse to semantics (as in the above-chance
recognition performance for distorted objects in our experi-
ment; see also Paivio, 1976).

(Appendices continue)

Figure C5. Effects of temporal distance between items in rearranged pairs in associative recognition on false
alarm rates (left) and correct rejection response times (right).
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Appendix D

Examples of Pairs of Words From the Stimulus Set of Cox, Hemmer, Aue, and Criss (2018) With Different
Levels of Orthographic (sij

Orth) and Semantic (sij
Sem) Similarity

Word i Word j sij
Orth sij

Sem

Bits Administration 0.18 �0.15
Representatives Cook 0.12 0.05
Tremendous Considerable 0.21 0.66
Statements Plate 0.37 �0.13
Yards Governor 0.37 0.05
Wonderful Lovely 0.37 0.71
Maps Lips 0.75 �0.11
Mud Mad 0.87 0.05
Slaves Slave 0.87 0.76

Note. See main text for definitions of similarity values.
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