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Abstract
We conducted three experiments specifically designed to simultaneously evaluate the effects on recognition accuracy of adding
items during study and adding items during test. The recognition memory list-length effect (LLE) is small and unreliable (Annis
et al. 2015; Dennis et al. 2008), but additional test trials produce a robust decrease in accuracy, termed output interference (OI;
Criss et al. 2011; Kılıç et al. 2017). This is puzzling; why should the size of the effect of additional stimulus exposures depend on
whether the item was studied or tested (Malmberg et al. 2012)? We found a decrease in accuracy when stimulus exposures were
added at any stage. However, the harm of adding items during study was less than the output interference that resulted from
testing. In addition, feedback presented during test served as a moderator. When feedback was given, OI was diminished, and the
LLE increased. Within the framework of our model, this suggests that testing with no feedback often results in the encoding of
additional information in a trace originally encoded during study, and testing with feedback decreases the tendency to update
traces during test. Several possible accounts of feedback reducing trace updating are discussed.

Keywords Item recognition . Output interference . List length effect . Memorymodels . Feedback

Errors in memory range from a daily annoyance to a threat to
health and freedom. Understanding the nature of memory er-
rors and the sources of forgetting has important practical and
theoretical implications. Most theories of memory assume that
forgetting is the result of interference caused by irrelevant
memories during retrieval (Anderson et al. 1998; Dennis and
Humphreys 2001; Murdock 1982; Raaijmakers and Shiffrin
1981; Reder et al. 2000). Interference is often investigated
using a study-test procedure, whereby subjects study lists of
items and later memory for those items is tested. Interference
is produced when items are encoded during study. For exam-
ple, when associations are created between similar items (e.g.,
study AC following the study of AD), making it more difficult
to retrieve either pair (Crowder 1976, for a review). Likewise,

interference may be a result of storing new memories during
testing (Wickens 1970).

Two experimental findings in the recognition literature—
the list length effect and output interference—demonstrate
increased forgetting with increases in interference from stor-
ing additional events in memory during study and test, respec-
tively. We conducted three experiments specifically designed
to tease apart the effects of adding items during study and
adding items during test on recognition memory, and the re-
sults are interpreted within a retrieving effectively from mem-
ory model (Shiffrin and Steyvers 1997; Criss et al. 2011). To
foreshadow, we find that testing conditions determine the de-
gree to which interference from traces stored during study and
test impact performance.

The List Length Effect

The list length effect is a reduction in accuracy that results
from increasing the size of the to-be-remembered memory
set. There are many demonstrations of this list length effect
(LLE) beginning with Strong Jr 1912, see also Cary and Reder
2003; Criss and Shiffrin 2004; Gronlund and Elam 1994;
Nobel and Shiffrin 2001). Accordingly, most models of mem-
ory assume that representations of other items are a source of
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interference and they predict that increasing the number of
items studied should harm performance. However, in practice,
list length manipulation is susceptible to several confounds,
and therefore, surprisingly few recognition experiments have
been reported with clear results.

For instance, Dennis and Humphreys identified confound-
ing details of many experimental designs that may cause an
artifactual LLE, and they reported null LLEs for recognition
when these design elements were controlled (Dennis and
Humphreys 2001; Dennis et al. 2008; Kinnell and Dennis
2011, cf. Cary and Reder 2003).

Even when conditions are well controlled, however, empiri-
cally establishing the LLE as either present or absent has been
challenging because the LLE is predicted to be quite small and
recognition memory data are inherently noisy (Shiffrin and
Steyvers 1997). For instance, the data from the Dennis et al.’s
(2008) LLE experiment in which various confounds were rig-
orously controlled provided more support for the models that
predicted an LLE than those that did not (Annis et al. 2015).
Annis et al. simulated data from a context noise model,
BCDMEM (Dennis and Humphreys 2001), in which the LLE
is not predicted, and from an item noise model, retrieving effec-
tively frommemory (REM) (Shiffrin and Steyvers 1997), which
predicts LLE. The simulated data was found to be not diagnostic
in distinguishing between the predictions of these models.

Setting these issues aside for the moment, there are two
unambiguous empirical facts: The magnitude of the LLE is
rather small, sometimes so small so as to not be measurably
different from zero. When the LLE is present in yes-no rec-
ognition performance, it takes the form of a mirror effect—hit
rates are greater and false alarm rates are lower for a shorter
list compared with a longer list (e.g., see Gronlund and Elam
1994; Cary and Reder 2003). This suggests that the interfer-
ence due to encoding additional traces prior to recognition
memory testing is not usually a large source of forgetting.
Further, the long-standing debate over the existence and mag-
nitude of the recognition memory LLE suggests that there
may be some unidentified factors that increase or reduce the
magnitude of the LLE.

Output Interference

Output interference (OI) is the finding that episodic recogni-
tion accuracy decreases with an increase in the number of test
trials (Criss et al. 2011; Kılıç et al. 2017; Koop et al. 2015;
Murdock and Anderson 1975; Ratcliff and Hockley 1980;
Roediger and Schmidt 1980). In contrast to the small and
noisy LLE, OI is relatively larger in magnitude and highly
reliable. Moreover, OI is primarily reflected by a decrease in
hit rates across test trials and a smaller, variable pattern in the
false-alarm rates in contrast to the mirror pattern of the LLE.
Together these two findings appear to present a paradox: why

is recognition memory minimally harmed by increasing the
number of to-be-learned items but increasing the number of
test items substantially decreases accuracy and why do the
patterns of decreasing accuracy differ?

These two effects are typically reported in different exper-
imental paradigms with different constraints. List length ex-
periments often have a variable delay to equate the duration
between the first study trial and the first test trial, a short test
list to equate test length for short and long study lists, and an
encoding task to minimize differential attention across the
study lists. OI experiments often include feedback during test
to control motivation across the test trials. Therefore, one pos-
sible explanation for this apparent LLE-OI paradox is simply
that the experimental designs foster different outcomes. We
addressed this possibility by evaluating both the LLE and OI
simultaneously each within a constant experimental design.

REM Model

Another account of theLLE-OI paradox is that different encoding
operationsunderlie the twophenomena, producingboth thequan-
titative and qualitative differences in observed behavior.1 The
encoding operations we focus on are implemented in the REM
model framework (Shiffrin and Steyvers 1997; Malmberg et al.
2004; Criss 2006; Criss et al. 2011; Kılıç et al. 2017). REM as-
sumesthat itemsarecomposedoffeatures.Somefeaturevaluesare
relatively rare, and thushighlydiagnostic, andothers are relatively
commonandsharedbymanydifferentwords.Thedegreetowhich
items share features determines how similar their representations
are and hence their confusability.

REM assumes episodic memory traces stored during an
event (one per stimulus in a typical laboratory situation) are
a noisy and incomplete representation of the items that were
studied. Some features are not stored during study and other
features are stored incorrectly, due to limited study time, at-
tention, orienting tasks, strategic encoding, or errors in
encoding. At test, the to-be-remembered context is activated
and the memory traces in that context become available for
comparison with the memory probe. The features of the mem-
ory probe are compared with each of the episodic traces and
the degree of match between the test stimulus and each mem-
ory trace is computed. A recognition decision is based on the
global match of the probe to the memory traces (i.e., the av-
erage of the match value between the probe and each stored
trace). As the number of activated traces in episodic memory
increases, the number of spurious matches increases due to
random matching of common features in non-target traces.
Additional item noise resulting from increases in the number
of spurious matches reduces the hit rate and increases the false

1 Here we present a simplified explanation of REM to illustrate the key factors
related to item noise interference and specifically the LLE and OI.
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alarm rate, producing a mirror-patterned list-length effect.
This item noise is the source of the LLE and one source of
item-based interference.

Updating Stored Memory Traces

Updating of memory traces is the second mechanism that
produces item noise interference, and the profound effects
on recognition performance are qualitatively different than
the effect of adding an additional trace according to REM.
Repetition during study leads to updating a memory trace by
storing features that were left unstored during the initial
encoding resulting a more complete memory trace
(Malmberg et al. 2004). Updating a memory trace causes a
reduction in the noise associated with that trace—it is a better
match to the target from which it was generated and it is a
worse match to any other item (see Criss 2006, 2009, 2010;
Criss and Koop 2015; Kılıç et al. 2017). That is, an updated
trace is differentiated. Differentiation models were developed
to account for data that extant global-matching models could
not (REM and McClelland and Chappell 1998, see Criss and
McClelland 2006) including the null list strength effect
(Ratcliff et al. 1990; Shiffrin et al. 1990).

Repetitions also occur when a target item is tested. Criss
et al. (2011) introduced encoding during test to the REM
framework to account for output interference. Specifically, if
the item is recognized, the best matching episodic memory
trace is updated.2 Otherwise, a new trace is stored. If an item
is judged to be new, then a new trace is stored. Thus, at study
and at test, repeated items are sometimes stored in new mem-
ory traces and sometimes cause updating of a previously
stored memory trace. Updating a memory trace differentiates
it from other traces, reducing its confusability by increasing
the number of mismatching features between the trace and a
different item and increasing the number of matching features
between the trace and its corresponding target.

Figure 1 shows that updating memory traces versus storing
new traces produce fundamentally different patterns of data.
This simulation begins with a fixed number of study items and
tracks the performance across a test list containing half foils
and half targets. In the ‘new-trace’model, an additional mem-
ory trace is stored on each test trial no matter. Hence, the
number of traces in the relevant memory set is directly related
to the number of trials, and as they increase in number, the HR
decreases and FAR increases. In other words, storing new
traces hides the signal in additional noise making it more
difficult to discriminate between targets and foils. In contrast,
the ‘update model’ assumes traces are updated when the test
item is judged to be old; otherwise, a new trace is stored (i.e.,
the Criss et al. (2011) model). Updating traces at test produces

differentiation and substantially decreases the HR and slightly
decreases the FAR for subsequently tested items. Note some
endorsed items are foils (i.e., false alarm). In that case, endors-
ing a foil causes an update of a trace which can be tested
subsequently. According to this model, the most highly acti-
vated trace in response to the probe is updated. Sometimes, the
updated trace represents the test item (i.e., a hit), but some-
times, a trace representing a different item is spuriously up-
dated with features of the current test item. This could occur if
a false alarm is made. Consequently, HR and FAR decreases
because fewer randommatches occur between the subsequent
test probes and the updated, well-encoded memory traces.
That is, the better stored any memory trace, the less likely it
is to match other items. Note that the magnitude of decrease in
HR is more substantial when traces are updated than when
new traces are stored and the effect on FAR is in different
directions (increasing with new traces and decreasing or re-
maining flat with updating).

In REM, the LLE has been modeled with a new-trace
mechanism and OI has been modeled with an update

2 Note that this could result in the updating of the trace representing a different
target, although this occurs infrequently when the items are randomly similar.

Fig. 1 REM simulations of a model where a new trace is added for every
test trial (“add new model”) compared with a model where a new trace is
added when the item is judged to be new and the best matching trace is
updated when a test item is remembered (“update model”). Adding a new
trace on each trial results in a mirror pattern with hits decreasing and false
alarms increasing. Updating results in differentiation and a steep decrease
in hit rate and a slight decrease or flat false alarm rate
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mechanism. These two different approaches have successfully
accounted for empirical pattern of results in separate studies.
However, these two effects have not been simultaneously
measured. Further the methodological concerns in the two
paradigms have resulted in different experimental designs.
The goal of this paper is to simultaneously evaluate the impact
of adding items during study and test under identical condi-
tions. The empirical effects are of interest on their own but are
particularly interesting in that they can help constrain models
of memory, specifically the two assumptions described
above—adding new traces compared with updating traces.

Experiment 1

The primary experimental manipulations in this and the forth-
coming experiments are study-list length and the number of
test trials. (Though, this is not manipulated per se, but rather,
performance is plotted as a function of test trial.) Secondary
manipulations were developed to address specific methodo-
logical concerns. For instance, a delay between study and test
was included as is common in many studies of the LLE. In
addition, feedbackwas also provided during test for half of the
conditions to address the classic hypothesis that recognition
OI may be due to the decline in motivation, attention (or
likewise an increase in boredom) across the test list (but see
Criss et al. 2017). By giving feedback, we intended to simply
encourage participants to continue to try on each trial so as to
avoid unpleasant negative feedback.

Methods

Participants

Participants in the experiment were 288 undergraduates from
the Syracuse University research participation pool who re-
ceived partial course credit. One participant who performed
much lower than chance (A′ was less than 0.40 and a chance
value of A′ is 0.5) was removed from the subsequent analysis.

Materials

The word pool consisted of 800 high frequency words be-
tween 4 and 7 letters in length and ranging between 9 and
13 log frequency (M = 10.46) in the Hyperspace Analog to
Language corpus (Balota et al. 2007). Words were randomly
assigned to condition for each participant.

Design and Procedure

Participants were randomly assigned to a condition in the 2
(feedback) × 2 (study list length) × 2 (delay) design by sched-
uling block (everyone in a block, N between 1 and 10,

participated in the same condition). Participants received a
study list with each item presented in the middle of the screen
for 1 s with a 100-ms blank screen separating trials. The study
list was either 75 items (short list) or 200 items (long list).
Following study, a 45-s distractor addition task was complet-
ed, followed by a delay of 0 or 15 min. The delay was filled
with a puzzle activity.

The test list consisted of 150 trials of self-paced single item
recognition trials. The test list included 75 targets (the last 75
that were studied in both conditions in order to equate study-
test lag) and 75 foils, randomly intermixed. Participants
judged (yes or no) whether the test word was studied.
Feedback (correct or wrong) was provided for 100 ms follow-
ing each response, or a blank screen (no feedback condition)
was presented for the same duration.

Results and Discussion

We first conducted an analysis of A′ to highlight the critical
factors before turning to an analysis including OI (Table 1).3

Sensitivity significantly decreased with delay, F(1,279) =
21.12, p < .001, ηp

2 ¼ :07, and longer study lists F(1,279) =

18.70, p < .001, ηp
2 ¼ :06. There was an interaction between

feedback and list length, F(1,279) = 3.91, p = .05, ηp
2 ¼ :01.

Post hoc comparisons using t test with Bonferroni adjustment
showed that the LLE was effective when feedback was pro-
vided, t = 4.72, pBonf < .001, but not when feedback was not
provided, t = 1.59, pBonf = 0.68. No other main effects or in-
teractions were significant.

To evaluate the pattern of output interference, the test was
divided into 5 blocks of 30 trials, resulting in a mixed design
with test block as the within-subject factor and feedback, list
length, and delay as between-subject factors (Fig. 2).4 FAR
significantly increased with a delay between study and test,
F(1, 279) = 9.72, p = .002, ηp

2 ¼ :03, producing at least some

of the change in sensitivity described above. Main effects of
test block, F(4,1116) = 5.27, p < .001, ηp

2 ¼ :02 and feed-

back, F(1,279) = 20.50, p < .001, ηp
2 ¼ :07 were qualified

by interactions. Both manipulations of primary interest (test
block and study list length) interacted with feedback,
F(4,1116) = 2.96, p = .02, ηp

2 ¼ :01, and F(1,279) = 4.18,

p = .04, ηp
2 ¼ :02, respectively. When feedback was provid-

ed, FAR increased across test block. The difference in FAR
between the first test block (M = .29, SD = .19) was signifi-
cantly lower than the FAR in the last block (M = .34, SD = .19
as post hoc comparisons measured by t test with Bonferroni
adjustments showed, t = 5.78, pBonf < .001, but FAR remained

3 Wherever A′ is reported, we also conducted analyses with d′ and the pattern
of data was the same.
4 Throughout we conducted analyses with different block sizes to investigate
the robustness of the effect. The patterns of data hold regardless of block size.
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fairly flat in the baseline condition, t = 0.70, pBonf = 1. This
finding is consistent with a model in which an existing trace
was updated with erroneous information during the commis-
sion of a false alarm. The list length by feedback interaction
was further analyzed by post hoc comparisons. When feed-
back was not provided, LLE was not observed, t = 0.134,
pBonf = 1. However, FAR was greater in the long condition
(M = .44, SE = .02) then in the short condition (M = .36,
SE = .02) when feedback was provided, t = 2.93, pBonf = .02.
In other words, feedback produces performance that is consis-
tent with a model where a new trace is stored on each trial
rather than updating an existing trace with new information.

HR was higher for short compared with long study lists,
F(1,279) = 6.87, p = .009, ηp

2 ¼ :02. The other main effects,

test block F(4,1116) = 23.63, p < .001, ηp
2 ¼ :08 and feedback

F(1,279) = 28.09, p < .001, ηp
2 ¼ :09, were qualified by

interactions. Even though the main effect of delay was not
significant, F(1,279) = 0.74, p = .39, ηp

2 ¼ :003, delay

interacted with test block such that the decrease in HR across
test blocks was reduced after a delay compared with testing
with no delay as revealed by a significant interaction,
F(4,1116) = 7.51, p < .001, ηp

2 ¼ :03. This finding is likely

due to approaching floor performance when the test is delayed.
Post hoc comparisons measured by t tests with Bonferroni ad-
justments showed that when there was no delay, HR in test
block 1(M = 0.67, SD = 0.15) was greater than HR in test block
5 (M = 0.53, SD = 0.21), t = 8.38, pBonf < 0.001, suggesting ev-
idence for the effect of test block.When a delaywas introduced,
HR in test block 1 (M = 0.57, SD = 0.20) did not differ signif-
icantly from HR in test block 5 (M = 0.53, SD = 0.21), t = 2.57,
pBonf = .44. Similarly, HR in the last block did not differ across
delay conditions, t = 0.68, pBonf = 1. The decrease in HR across
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Fig. 2 Probability of calling a test
item old in experiment 1. Black
symbols are targets and white
symbols are foils. Squares
represent the long study list, and
circles represent the short study
list conditions. Error bars
represent standard error of the
mean

Table 1 Discriminability in each
condition of each experiment.
Experiments 1 and 2 used yes/no
single item recognition therefore
A′ is a suitable measure of the
ability to discriminate between
targets and foils. Experiment 3
used 2 alternative forced choice
and we report the proportion of
correct trials on which the target
was identified (P(c))

Delay Feedback List Length Experiment 1

A′

Experiment 2

A′

Experiment 3

P(c)

0 min Yes Short
.74 .76 .70

Long
.67 .68 .62

No Short
.73 .74 .67

Long
.70 .71 .61

15 min Yes Short
.70 .65

Long
.63 .58

No Short
.67 .61

Long
.64 .60
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test blocks was also reduced in the presence of feedback during
test, F(4,1116) = 5.37, p < .001, ηp

2 ¼ :03. Post hoc t tests with
Bonferroni adjustments showed that when feedback was pro-
vided, HR in test block 1 (M = 0.63, SD = 0.15) did not differ
significantly from HR in test block 5 (M = 0.59, SD = 0.19), t =
2.78, pBonf = .26. However, in the absence of feedback, HR in
block 1 (M = 0.60, SD = 0.22) dropped in block 5 (M = 0.46,
SD = 0.22), t = 8.22, pBonf < .001. This pattern is again consis-
tent with the idea that feedback elicits behavior more consistent
with a model where a new trace is added on each test trial.

In summary, both OI and a LLE were observed under con-
stant experimental methodology. OI was relatively large in
magnitude (compared with the size of the LLE), consistent
with the REM model where adding new traces during study
results in the storage of a new trace but test trials sometimes
results in the storage of a new trace and other times results in
the updating of a stored memory trace. This differentiation of
traces during test causes the updated traces to become even
less similar to other items (e.g., those tested later during the
test) reducing both the HR at a faster rate than under a model
where a new trace is stored and reducing the FAR.

We included feedback in the current study to maintain mo-
tivation throughout the test with an aim to preclude the ambi-
guity related to changing vigilance. Previously, many studies
have shown that feedback has virtually no impact on accuracy
in recognition memory (Han and Dobbins 2008, experiment
1; Kantner and Lindsay 2010; Criss et al. 2011) though a few
have shown that feedback may affect response bias (Kantner
and Lindsay 2010; Koop et al. 2015; Starns et al. 2010). The
results in the current experiment showed a moderating effect
of feedback on LLE and OI, especially observed in HR and
FAR without a strong effect on accuracy. One hypothesis for
this finding is that the feedback effects reflect changing
criteria between the different conditions, especially given that
list length and feedback are between-subject manipulations in
this experiment. We evaluate this possibility by conducting
the feedback and list length conditions in a within participant
design (experiment 2) and applying a forced choice testing
paradigm (experiment 3).

Experiment 2

The purpose of this experiment was to replicate the OI and
LLE findings and the role of feedback as a moderator. There
were a few changes to the design, the most important of which
was that the manipulation of study list length and feedback
were within-subject and the delay manipulation was eliminat-
ed. We also considered the possibility if feedback itself was
not critical, but rather, any simple sensory stimulation follow-
ing the decision might cause an additional trace of the test
probe to be stored. To address this, we present the word ‘next’

following each response in the no feedback condition. This
equates the conditions in a sense that a word is visually pre-
sented for the same duration after each response, isolating the
role of actual feedback on performance.

Methods

Participants

Participants in the experiment were 41 undergraduates from
the Syracuse University research participation pool who re-
ceived partial course credit, 1 of whom was excluded due to
technical problems.

Materials

The word pool consisted of 2929 words between 4 and 8
letters in length and of those 2912 in the Hyperspace Analog
to Language corpus (Balota et al. 2007), ranged between 1 and
14 log word frequency (M = 8.71). Words were randomly
assigned to condition for each participant and did not repeat
(except when presented as a target during a test).

Design and Procedure

Participants completed 8 rounds of study test, 4 during each of
2 days. The days were separated by approximately 1 week.
Each day, the 4 rounds included each condition of the 2 (feed-
back at test) × 2 (study list length) within-subject design, ran-
domly ordered. In the no feedback conditions, the word ‘next’
was presented for the same duration as the feedback. All other
details were identical to the experiment 1 no delay conditions.

Results and Discussion

The results replicate that A′ is better for shorter than longer
study lists, F(1,39) = 29.73, p < .001, ηp

2 ¼ :43. We should

note that when list length conditions are countered balanced in
a within subject design, the order of the study list length might
obscure the LLE such that when long list is studied before
short list, LLE disappears (Brandt et al. 2019; Fox et al.
2020). However, the effect size of the list length variable
was reasonably high, suggesting that such a possibility is very
unlikely in the current experiment. LLE interacts with feed-
back, F(1,39) = 4.85, p = .03, ηp

2 ¼ :11. Post hoc comparison

using t test with Bonferroni adjustments showed that the LLE
is only present when feedback is provided during test t = 5.09,
pBonf < .001, but not in the absence of feedback t = 1.62,
pBonf = 0.66 (Table 1).

OI was evaluated by dividing the test into 5 equally sized
blocks, each of which contained 30 test trials. A 2 (study list
length) × 2 (feedback) × 5 (test block) repeated measures
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ANOVAwas conducted for false alarms and hits. The data are
plotted in Fig. 3. FAR was higher for longer lists, F(1,39) =
8.89, p = .005, ηp

2 ¼ :19, and when feedback was provided

F(1,39) = 26.57, p < .001, ηp
2 = .41. FAR slightly increased

across test block, F(4,156) = 5.38, p = .015, ηp
2 ¼ :08.

Contrasts showed that mean FAR increased from test block
1 (M = .32, SD = .14) to test block 5 (M = .34, SD = .15),
t(156) = 2.39, p = 0.02. Neither of the interactions across list
length, feedback, and test block variables exceeded the signif-
icance criterion value.

HR was lower when feedback was withheld (M = .62,
SD = .15) compared with being provided (M = .65,
SD = .13), F(1,39) = 8.44, p = .006, ηp

2 ¼ :18, and for long

lists (M = .62, SD = .14) than for short lists (M = .65,
SD = .14), F(1,39) = 9.19, p = .004, ηp

2 ¼ :19. HR decreased

across test block, F(4,156) = 34.30, p < .001, ηp
2 ¼ :47. The

decrease in HR across test block interacted with feedback
showing a greater decline in the absence of feedback,
F(4,156) = 4.77, p < .001, ηp

2 ¼ :11. Post hoc comparisons

measured with t test with Bonferroni adjustments revealed
an absence of a significant difference across feedback and
no feedback conditions at the beginning of the test (t =
0.182, pBonf = 1), while mean HR was found to be greater in
the final test block for the feedback condition (M = .62,

SD = .13) compared with the mean HR in the no feedback
condition (M = .53, SD = .14), t = 4.71, pBonf < .001.

The interaction between list length and feedback was sig-
nificant for HR, F(1,39) = 4.11, p = .05, ηp

2 ¼ :10.

Specifically, HR was greater for short lists (M = .68,
SD = .13) compared with long lists (M = .63, SD = .13) when
feedback was provided as post hoc analysis with Bonferroni
adjustments showed, t = 3.5, pBonf < .003. This effect disap-
peared when feedback was not provided, t = 0.69, pBonf = 1.
Together, these findings suggest that the combined effect on
discriminability (A′) replicated the finding that the difference
in accuracy between short and long study lists was magnified
when feedback was provided during test.

In summary, OI and LLE were simultaneously observed
replicating experiment 1. These two effects attenuated when
list length and feedback was respectively manipulated within
subjects as was manipulated between subjects in experiment
1. These findings suggest the possibility that receiving feed-
back during test increases the tendency to add new traces in
memory during the commission of a false alarm, increasing
the noise caused by other memory traces, whereas a lack of
feedback increases the tendency to erroneously modifying an
existing trace further reducing recognition accuracy via a de-
crease in HR. The next experiment aims at evaluating whether
this moderating effect of feedback would be observed when
response bias is controlled in a forced choice recognition task.

Experiment 3

The primary goal of this experiment was to replicate the find-
ings we have observed in experiments 1 and 2 and establish
whether the effects are dependent on a flexible response bias.
Specifically, we were interested in the LLE and OI and the
aforementioned role of feedback in the LLE and magnitude of
OI. The only change in methodology was the use of two-
alternative forced choice (2AFC) for testing. 2AFC has the
advantage of being resilient against criterion shifts. The use
of 2AFC is particularly useful for evaluatingwhether the mod-
eration of the LLE and OI by feedback is due to a shift in the
criterion. Most accounts of 2AFC assume that decision-maker
directly compares the familiarity of the two test items to one
another and selects the item with the highest mnemonic evi-
dence (Swets and Green 1961; Malmberg and Murnane 2002;
Criss et al. 2011). Hence, 2AFC is criteria free.

Methods

Participants

Participants in the experiment were 326 undergraduates from
the Syracuse University research participation pool who
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Fig. 3 Probability of calling a test item old in experiment 2. White
symbols are targets and black symbols are foils. Circles represent the
long study list, and squares represent the short study list conditions.
Error bars represent one standard error. The model predictions are
represented as x

184 Comput Brain Behav  (2021) 4:178–190



received partial course credit. An additional 5 students partic-
ipated but were excluded due to technical errors. Data from 3
participants were excluded from the subsequent analysis due
to below chance performance. More specifically, performance
that is lower than 0.4 in a 2AFC task indicates that the partic-
ipant used the incorrect key mappings such that to select the
word on the left they hit the right key and vice versa.
Therefore, data from those participants were excluded and
the remaining sample size was 323.

Materials

The Word Pool Was the Same as That Used in Experiment 1

Design and Procedure

The design was identical to experiment 1 with two exceptions.
First, rather than presenting 75 targets and 75 foils randomly
intermixed as single items during test, the targets and foils
were randomly paired and one of each was presented as a pair
for a 2 alternative forced choice test. Participants indicated
which of the two items was studied. Second, rather than a
blank screen separating trials in the no feedback condition,
the word ‘next’ appeared centered on the screen as in exper-
iment 2.

Results and Discussion

To evaluate output interference the test was divided into 3
blocks of 25 trials each, resulting in a mixed design with test
block as the within-subject factor and feedback, list length,
and delay as between-subject factors (Fig. 4). The results
largely replicate experiment 1 and experiment 2. Namely, ac-
curacy decreased with delay, F(1,315) = 21.26, p < .001,
ηp

2 ¼ :06, study list length, F(1, 315) = 35.45, p < .001,

ηp
2 ¼ :09, and test block, F(2,630) = 36.204, p < .001,

ηp
2 ¼ :10. The LLE was enhanced when participants were

given feedback as revealed by an interaction between list
length and feedback, F(1, 315) = 3.87, p = .05, ηp

2 ¼ :01.

For the participants who studied long lists, accuracy was not
affected by feedback as post hoc comparisons suggest, t =
0.11, pBonf = 1. The percentage of correctly selecting the target
was similar across feedback (M = .60, SD = .49) and no feed-
back conditions (M = .60, SD = .49). On the other hand, for the
participants who studied short lists, receiving feedback affect-
ed the percentage of correctly selecting the target, t = 2.65,
pBonf = .05, such that the percentage was greater when partic-
ipants received feedback (M = .67, SD = .48) than when they
did not (M = .64, SD = .47).

Additionally, there was an interaction between test blocks
and delay, which showed that the magnitude of OI was

dampened when test was delayed, F(2, 630) = 5.88, p = .003,
ηp

2 ¼ :02, which could again be likely due to the overall

decrease in accuracy with delay compressing the scale. Post
hoc comparisons measure by t test with Bonferroni adjust-
ments showed that at the beginning of the test block, partici-
pants weremore accurate when the test list was presented right
after the study list (M = .70, SD = .46) than being presented
after a delay (M = .63, SD = .48), t = 5.22, pBonf < .001.
However, this pattern disappeared towards the end of the test
list, such that the accuracy levels were similar in the delay
(M = .61, SD = .48) and no delay (M = .59, SD = .49) condi-
tions, t = 1.34, pBonf = 1.

Finally, an interaction between test block and list length
showed that OI was dampened when items were studied in a
long list, F(2, 630) = 3.06, p = .05, ηp

2 ¼ :01, which could

also be due to an overall decrease in accuracy in long lists.
For example, the average rate of indicating the target word
correctly at the beginning of the test preceding a short list
(M = .70, SD = .46) was greater than that of the test following
a long list (M = .62, SD = .48), as post hoc comparisons
showed, t = 5.9, pBonf < .001. Towards the end of the test list,
the percentage of correctly selecting the target word decreased
with different rates for long and short conditions. For the long
list condition, performance reached its asymptote at the sec-
ond block (M = .59, SD = .49), as revealed by a lack of a sig-
nificant difference between the second and the third block
(M = .58, SD = .49), t = 0.006, pBonf = .61. That might be due
to the reason that participants started with a lower perfor-
mance at the beginning of the test and their accuracy dropped
from there until reaching an asymptote.

In summary, the observations of a decrease in accuracy
with more study and more test items and larger such effects
with feedback during test were replicated under 2AFC testing.
This suggests that these effects are rooted in the interference in
accurately retrieving from memory rather than meta-cognitive
affects in the decision process.

REM Model

We describe the predictions that the model makes for OI and
LLE based on many prior papers. However, as we note, these
two empirical phenomena have not been studied simulta-
neously. To ensure that the model is behaving as anticipated,
we fit the model initially to experiment 2. That is mainly
because in experiment 2, there was no delay manipulation
and therefore we aimed at simulating the data from the most
basic experiment, which addresses the direct relationship be-
tween OI and LLE and the moderating effect of feedback on
LLE. In the supplementary material, we present the model fits
of experiments 1 and 3 only for the no delay conditions.
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In the REM model, both item and context information are
represented as vectors of feature values which are sampled
independently from the geometric distribution as follows:

P vð Þ ¼ 1−gð Þv−1g; v ¼ 1;…;∞; ð1Þ

where g is the parameter for the geometric distribution, v is the
actual sampled value for each element in the vector, and the
length of the vector was set to 20 for each simulated item.

In the current simulation, only the item noise mechanism of
REM was tested. The main reason for that was to investigate
the sole effect of item noise on OI and LLE. Of course, adding
the context-noise component would further improve the fit of
the model to the data. However, the main aim of the current
simulation was to evaluate how adding items simultaneously
during study and test affects the pattern observed for LLE and
OI in item recognition.

In the REM model, the items are stored in memory proba-
bilistically and with some error. The probability of each fea-
ture being stored is represented with the parameter u, which
determines the strength of encoding. Another parameter, c,
moderates the probability of correctly copying the feature val-
ue if the feature is stored. If a feature is not correctly copied,
then a random feature value is sampled from the same geo-
metric distribution to be stored in the trace.

During retrieval, the test item is compared with all of the
traces in memory and a subjective likelihood is calculated
using the following equation:

λ i; jð Þ ¼ 1−cð Þnq i; jð Þ ∏
∞

v¼1

cþ 1−cð Þg 1−gð Þv−1
g 1−gð Þv−1

" #nm�v;i; j

�
; ð2Þ

where j indexes the test item, i indexes the memory trace, c is
the probability of correctly copying the feature value, nq is the
number of non-zero feature mismatches, v is the feature value
sampled from the geometric distribution, and nm is the num-
ber of non-zero feature matches. To make a decision, the sub-
jective likelihood ratios are averaged across traces stored in
memory, which results in an odds (Φ) value:

Φ j ¼ 1

n
∑
n

i¼1
λ i; jð Þ; ð3Þ

where n is the number of traces in the memory search set, i
indexes the memory trace, and j indexes the test item. If Φ
exceeds the criterion, item j is judged to be “old,” ifΦ is below
the criterion, then the item j is judged to be “new.” From a
signal detection perspective,Φ can be considered as the mem-
ory evidence and criterion as the threshold for endorsing an
item.

For the no feedback condition, we implemented the
encoding during test model as described in Criss et al.
(2011). When an item is judged to be old, the best matching
episodic trace is updated, which means missing features are
likely to being stored. When an item is judged to be new, a
new memory trace is added to memory. As a result of these
rules, incorrect features are stored in a memory trace for false

Fig. 4 Percent correct in the 2-
alternative forced choice task of
experiment 3. Black symbols
represent the short list and white
symbols the long study list. Error
bars are +/− one standard error of
the mean
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alarms and for incorrectly matching targets. Also, sometimes,
a second memory trace is stored for missed targets. Therefore,
these rules a sharp decrease in HR, while a relatively steady
FAR across test blocks.

For the feedback condition, we assumed that when partici-
pants received feedback during test, they always added the trace
of the test item tomemory. Thus, this implementationmimics the
list length effect and sometimes second traces are encoded in
memory. Because of that, FAR increases and the decrease in
HR is less prominent as a function of test block. Table 2 presents
the parameter values of the model that was used to simulate data
in experiment 2 (see the results of the model in Fig. 3).

General Discussion

The empirical goal of this manuscript was to simultaneously
evaluate the effects of adding items during study and adding
items during test under identical experimental methodology.
We consistently observed a detriment to performance when
items were added at any stage and the harm from adding items
during study was less than the output interference that resulted
from testing items. This pattern of results is consistent with the
item noise models in general and specifically with the Criss et al.
(2011) implementation of REM. Perhaps the key finding, how-
ever, was that the effects of list length and memory testing
interacted with the presence of feedback during testing such that
feedback disrupts the tendency to erroneously modify existing
traces during the commission of false alarm when viewed within
the framework extant REM models of recognition memory.

REM predicts a small LLE with higher hits and lower false
alarms for shorter lists (e.g., Shiffrin & Stevyers, 1997; Criss
and Shiffrin 2004). The Criss et al. (2011) extension incorpo-
rates mechanisms during testing as follows. Presenting items
at test results in one of two outcomes—remembered items
cause updating of the best matching memory trace and non-
remembered items cause the storage of a new episodic mem-
ory trace. This creates the possibility of three types of

additional noise. Miss trials result in the storage of a second
copy of a target, false alarm trials result in a memory trace
being updated with incorrect information (i.e., features that
belong to a different item), and some hit trials may also result
in item features being stored in the wrong trace (i.e., when the
best matching trace does not correspond to the target being
tested but to a different target item). Presumably, the latter
type of error is minimal, but nonetheless, it is possible.
These mechanisms of encoding during retrieval respects the
principles of REM that encoding is noisy and error-prone and
is consistent with the larger literature showing that memories
are malleable and sometimes memories of different events are
combined. These errors all contribute to a decrease in the HR
across test trial. The pattern of FAR is variable because it
depends on the relative degree of each storage mechanism.
Storing additional traces (as in misses and correct rejections)
increases the FAR, whereas updating traces (as in hits and
false alarms) decreases the FAR.

In addition to causing the particular pattern of OI
that is observed in human behavior, updating traces also
results in differentiation-based findings of a null list
strength effect and the strength-based mirror effect.
Both of these findings reflect the fact that strengthening
memories reduces the noise and subsequent confusion
associated with those memories. This connection be-
tween otherwise unrelated empirical regularities suggests
that differentiation is a core mechanism underlying
memory (see also Koop & Criss, 2015; Kilic et al.,
2017).

Updating remembered traces serves as a potential
mechanism for reconsolidation. Memories that are
reactivated are brought into a state where they can be
modified or updated, and then, the new changed mem-
ory is reconsolidated (Barry and McGuire 2019; Elsey
et al. 2018; Hardt et al. 2010). REM offers a mecha-
nism for this phenomenon and offers predictions. For
example, memories that are well encoded are more like-
ly to be retrieved but have little less to gain from
reconsolidation, whereas memoires that are minimally
encoded have much to gain from reactivation and
reconsolidation (e.g., see Kılıç et al. 2017). A fruitful
line of future research could be to explore the relation-
ship between REM, these hallmark findings in recogni-
tion memory, and reconsolidation.

Feedback presented during test served as a modera-
tor. When feedback was presented at test, the OI in HR
was smaller and the size of the LLE was larger com-
pared with when feedback was withheld. To ensure that
the apparent effects of feedback were not due to storing
any item or due to simple sensory input, we showed the
word “next” in place of the feedback in experiments 2
and 3 and the pattern held. The role of feedback was
novel because a number of studies show that providing

Table 2 Parameter values used in the REM model simulations

Parameter Criss et al. (2011) Experiment 2

Number of features 20 20

g 0.35 0.35

c 0.7 0.7

u 0.16 0.22

Criterion 0.72 0.75

Study list length 75

Long study list length 200

Short study list length 75

Test list length 150 150
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feedback does not change accuracy and the same was
true here. Overall accuracy was unaffected by feedback.
However, feedback changed the pattern of hit rates and
false alarm rates as they relate to the pattern of OI and
LLE. Within the framework of the REM model, this
suggests that providing feedback causes new traces to
be added to memory rather than, or in addition to,
updating traces during test. One possibility for this pat-
tern is that whenever feedback indicates that an ‘old’
response was incorrect a new trace is stored in response
to prediction error. The worse performance, the more
incorrect responses and the more additional traces are
added. Long lists have more such errors resulting in
more traces added during test than short lists. Another
possibility is that updating proceeds just as described by
Criss et al. (2011). In addition to that, participants store
a trace including the feedback itself. In either of these
cases, additional learning occurs during test rather than
occurs during study, consistent with the testing effect
(Karpicke and Roediger 2008; Karpicke et al. 2014)
and the benefits of testing are potentially more pro-
nounced when feedback is provided (cf, Aue, Criss, &
Prince, 2015).

This mechanism of feedback, adding new traces, re-
sulted in an increase in FAR and dampened the de-
crease in HR because especially in HR a second copy
of a trace increased the overall memory noise by acti-
vating common random features. Therefore, adding a
new trace after a feedback caused multiple traces (two
in this case) of the same study item. However, in the
current study, the effect of feedback on a second test of
the same item was not measured, which might be an
interesting question for the role of feedback on item
recognition in future studies. Building on that, the role
of feedback in multiple repetitions can be further inves-
tigated to understand the underlying mechanisms of the
spacing effect such as recursive reminding or the mod-
ification of the initial trace (e.g. Benjamin and Tullis
2010; Hintzman 2010; Wahlheim et al. 2014).

A third possible explanation has nothing to do with
adding information to episodic memory. Perhaps feed-
back serves to better isolate the relevant subset of mem-
ory to search. If isolating the relevant context is imper-
fect and extra-list memory traces enter the set, then any
effect of the list itself is diluted. Better isolating the
study list amplifies manipulations of the study list such
as the length of the list. Evidence for this idea comes
from the fact that false alarms seem to be more affected
by feedback than hits, mainly due to false alarms being
particularly sensitive to extra-list traces because the foils
could be included in that set.

Alternatively, if performance decreases as a function of test
position because of the drifting context over the course of

testing, then it is possible that receiving feedback increases
the rate of contextual drift. A recently developed model
(Osth et al. 2018) aims to examine how much noise in recog-
nition testing comes from the items presented in the
experiment and how much noise from the drifting context
over the course of the experiment. Osth et al. (2018) suggested
that the main cause of decreasing performance is in fact
drifting context while other items in memory have minimal
effect on subsequent testing. The role of feedback in this study
can also be explained by an increase in the rate of drifting
context. As simulated by Osth et al. (2018), drift in context
results in an increase in FAR as observed in the feedback
conditions; however, it also results in a decrease in HR, which
was not the case in the current study. Because the model
proposed by Osth et al. (2015) is a dynamic model which
benefits from conjoint measures of reaction time and response
rates, including a change in speed accuracy parameters might
suggest a better understanding on the role of feedback.

Discriminating between these and other possibilities
is an avenue left for future research that is focused on
the role of feedback in memory. For example, testing
memory for the feedback provided to any item might be
informative. In addition, analyzing memory for the test-
ed items conditional on response given for the initial
tes t might help to discr iminate between these
possibilities.

Data Availability Data is available at https://osf.io/8zzbm/.
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