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Abstract

The work of Ed Zigler spans decades of research all singularly dedicated to using science to improve the lives of children facing different
challenges. The focus of this article is on one of Zigler’s numerous lines of work: advocating for the practice of mental age (MA) matching in
empirical research, wherein groups of individuals are matched on the basis of developmental level, rather than chronological age. While MA
matching practices represented a paradigm shift that provided the seeds from which the developmental approach to developmental disability
sprouted, it is not without its own limits. Here, we examine and test the underlying assumption of linearity inherent in MA matching using
three commonly used IQ measures. Results provide practical constraints of using MA matching, a solution which we hope refines future
clinical and empirical practices, furthering Zigler’s legacy of continued commitment to compassionate, meaningful, and rigorous science in
the service of children.
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“The I.Q. is only a rate measure in the sense that it relates a non-
psychological measure (passage of time) to a psychological one
(level of cognition achieved). Approached in this way it is the
MA (level) and not the I.Q. (the relationship of MA to chronolog-
ical age) that determines the exact nature, including the rate, of
learning any task. (Zigler, 1967, p. 578).”

Originally, this paper, based on Ed Zigler’s articulation of the
essential need for mental age (MA) matching in empirical com-
parisons between persons with intellectual disability and typically
developing children, was meant to include four generations of
scholars beginning with Ed, who mentored Jake Burack, who
mentored Natalie Russo, who mentored Elizabeth Kaplan-Kahn.
It also includes colleagues from computational cognitive science
who, at a seminar, asked the question that is at the core of this
paper, and then helped us to address this essential methodological
issue in the developmental approach to intellectual disability.
Although Ed passed away before we began writing this paper so
cannot be included as an author, we hope that it is consistent
with his basic value that science is only meaningful when it is
used to help others and that it contributes to both research and
clinical work focused on individuals with intellectual disability.
The questions we aim to answer, which we will frame in terms
of the evolution of arguments of the developmental approach to

developmental disability are: when do our methods for MA
matching work? and when do they not? The goal of this paper
is to answer this question in the most pragmatic sense of the
term. That is, at which point does the relationship between MA,
chronological age (CA), and IQ change across different IQ
tests? The answer to this question provides computational limits
on how we use IQ tests to compare the performance of those
with and without intellectual disability. The intergenerational
tracing of this question starts with the publication of Ed’s
(Zigler, 1967, 1969) early papers on the topic.

The Second Normal Distribution

With the impressive advances in biologically based research gener-
ally, and in genetic research specifically (Chiurazzi & Pirozzi, 2016;
Mir & Kuchay, 2019; Wolfe, Strydom, & Bass, 2019), the number of
identified genetic causes of disorders associated with intellectual
disability has grown exponentially (Abbeduto, Thurman, Bullard,
Nelson, & McDuffie, 2019; Vissers, Gilissen, & Veltman, 2016;
Vorstman & Ophoff, 2013), and so too have the attempts to under-
stand their nosology (e.g., Stevenson, 2000), etiology (e.g., Iwase
et al., 2017; Karam et al., 2016), and prognosis (e.g., Hanaoka
et al., 2010; Katz & Lazcano-Ponce, 2008). While biological
advances have provided clues related to the origins of more than
1,000 disorders that impact cognitive function, the field of psychol-
ogy and its allied disciplines has been focused more on the “now
what” questions. Now that we know the cause, how do we under-
stand the effect? For example, we know that atypical cell division
which results in a third chromosome 21 leads to a condition called
Down syndrome. The role that psychology has played is in
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understanding the specific impacts of this third chromosome on
the cognitive, behavioral, social, and emotional life of those with
the condition as well as on their family members.

At the core of this work is the developmental approach to
intellectual disability that was originally delineated by Ed and col-
leagues (Hodapp, Burack, & Zigler, 1990; Zigler, 1967; Zigler &
Balla, 1982; Zigler & Hodapp, 1986) and extended to include per-
sons with organic etiologies by Dante Cicchetti and colleagues
(Cicchetti & Beeghly, 1990; Cicchetti & Ganiban, 1990;
Cicchetti & Pogge-Hesse, 1982). This approach focuses on how
we study those with intellectual disability in order to gain a mean-
ingful understanding of the development of their cognitive,
behavioral, social, and affective functioning. Who do we make
comparisons with, and on what basis are we comparing?
Students of the developmental approach are familiar with these
questions, and much has been written about their essential role
in research with populations of individuals with intellectual dis-
abilities (Burack, Dawkins, Stewart, Iarocci, & Russo, 2012a;
Burack, Iarocci, Flanagan, & Bowler, 2004; Burack, Russo,
Flores, Iarocci, & Zigler, 2012b; Flanagan, Russo, Flores, &
Burack, 2008; Jarrold & Brock, 2004; Mervis & Klein-Tasman,
2004; Mervis & Robinson, 1999). However, the failure to consider
these essential developmental issues continue to plague and fatally
flaw many well-meaning and even well-funded empirical efforts
(Burack, Russo, Gordon Green, Landry, & Iarocci, 2016b).
Initially, Ed and colleagues referred to those who failed to ade-
quately consider MA as defect theorists (Bennett-Gates &
Zigler, 1998; Hodapp & Zigler, 1995; Zigler, 1967, 1969; Zigler
& Balla, 1982), but concerns regarding the confounded and mis-
leading findings have recently been reignited with the advent of
researchers using neuroscience techniques (Burack et al., 2016b)
to examine brain–behavior relationships in populations of indi-
viduals with intellectual disabilities.

In a classic example, defect scientists of the 1960s were focused
on understanding the key underlying deficit of various intellectual
disabilities, with each touting their area of research as fundamen-
tally causal to the cognitive dysfunction of a group (Zigler, 1967,
1969). In so doing, scientists compared performance on tasks of
their construct of interest (e.g., attention, executive function, mem-
ory) between individuals with intellectual disability and those with
average IQs of the same CA (for a discussion, see Burack et al.,
2016b). When they inevitably found that individuals with intellec-
tual disability performed worse on the specific task at hand in
comparison to a group of individuals who had better overall cog-
nitive function, they touted their area or construct as central or
causal of the target group’s intellectual difficulties. Of course, how-
ever, what they were finding was that a group of individuals with
lower cognitive abilities performed worse in a particular area of
function that was highly reliant on cognition in relation to those
with higher cognitive abilities (Burack, Cohene, & Flores, 2011;
Burack, Evans, Klaiman, & Iarocci, 2001; Burack et al., 2012b;
Iarocci & Burack, 1998). Clearly, making comparisons between
groups of individuals at the same CA, but, by definition of one
group’s disability status, at different levels of cognitive develop-
ment precluded any scientifically sound conclusions about a spe-
cific area of cognition being meaningfully delayed beyond the a
priori general differences in level between the groups.

This research led to many problematic and scientifically flawed
claims that were translated into ineffective approaches to interven-
tions and years of lost time with respect to science, practice, and
education for the individuals and their families. While these fun-
damental flaws seem perhaps like an error “of the time,” this

method of making comparisons on CA, rather than on develop-
mental level, still plagues our clinical and scientific landscape
(Burack et al., 2016b). The implications even extend beyond
work with persons with intellectual disability to any group with
some consistently lower-than-average IQ levels. For example, in
a study with common clinical tests, Lane et al. (2014) argued
that attention processing appears to be commensurate with MA
levels among children with fetal alcohol syndrome and related
conditions for whom IQ is often lower than average, and that
the common perceptions of attention deficits in this group are
likely the consequence of the parent, teacher, and psychologist’s
expectations for the individuals’ CA. Thus, in contrast to the
defect theorists, the proponents of the developmental approach
recast claims of deficit and defect into opportunities to under-
stand developmental organization and coherence (Burack et al.,
2016a; Cicchetti & Ganiban, 1990; Cicchetti & Pogge-Hesse,
1982; Hodapp et al., 1990).

The Developmental Approach to Intellectual Disability

The developmental approach has as one of its central tenets that
one must consider development in order to understand intellec-
tual disabilities. While this sounds like a rather simple truism, it
is often overlooked and difficult to quantify from a research per-
spective. However, to truly understand the impact of intellectual
disability on a particular psychological construct, one must con-
sider the impact of the individual’s experiences, their rate of cog-
nitive growth, their history of successes and failures, their social
interactions and their environment, and how this differs from typ-
ically developing individuals, or groups of individuals in the case
of research. While theoretically this makes sense, it is practically
and pragmatically an impossible task as developmental rates differ
as a function of the skills being measured.

Accordingly, in operationalizing the developmental approach, a
construct referred to as MA has been invoked. MA reflects the rela-
tionship between an individual’s CA and level of skill (broadly
defined). MA has been used to provide a reasonable proxy with
which to compare the performance of a group of individuals
with an intellectual disability to a group of typically developing
individuals because using this construct attempts to account for
the fundamental differences in these two groups’ cognitive abilities.
In this way, we can understand whether a particular area or skill
level is commensurate with a child’s developmental level while con-
sidering their overall cognitive capacity, or whether there are spe-
cific deficits or delays at hand that are uniquely related to a
particular individual or group’s phenotype.

Despite all its benefits, MA matching is not without some
complications. Given their differing rate of development, the pro-
cess of reaching any given MA is obviously longer for a person
with intellectual disability. Thus, for example, using the tradi-
tional formula of (MA/CA) x 100 = IQ, a child with
an intellectual disability and an IQ of 60 will be 10 years old
when they attain the MA of 6, whereas their typically developing
peer will be 6 years old. Clearly, in addition to the different expe-
riences associated with their differences in intellectual level and
associated conditions, the child with intellectual disability has
lived considerably longer with all the inherent consequences of
that fact. In addition, the rate of development is itself a critical
issue to consider with regard to its meaning for the strength of
the attainment of developmental milestones and for the sequelae
of the moment in time of matching, as the MAs of children of
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differing IQs that are the same at one moment in time will imme-
diately diverge in the next moment.

MA matching, thus, is clearly not a magic bullet and cannot
account for all aspects of development, but it is a better approach
within the inherently imperfect enterprise of empirical work that
allows for the delineation of strengths and weaknesses in areas of
functioning relative to an individual’s level of skill development
(e.g., Campbell et al., 2013; Russo et al., 2007), and has served
to debunk many of the defect theorists claims (Burack et al.,
2001, 2016; Burack et al., 2012a).

Fundamental Theoretical Assumptions of Mental Age
Matching

Between-group comparisons are inextricably woven into the
very conceptualization of intellectual disability (Burack, 1997;
Cicchetti & Pogge-Hesse, 1982; Zigler, 1967, 1969; Zigler &
Hodapp, 1986). No matter what the variable of interest, whether
it be cognitive, emotional, behavioral, or physical, the concept of
intellectual disability is defined by a comparison to a “typically
developing” distribution. As these comparisons are the marker
with which we delineate our diagnostic boundaries, answers to
the questions of who we are comparing, which measures we are
using to make comparisons, and how we match the groups have
the ability to powerfully shape our understanding of persons
with intellectual disability.

Generally speaking, IQ tests are normed to provide a score that
represents the relative standing of an individual in relation to
other individuals of the same CA. Theoretically, IQ scores repre-
sent the rate at which someone has achieved a particular set of
skills, in relation to the rate of skill acquisition of similarly aged
peers. Commonly, IQ tests have a mean standard score of 100
and a standard deviation (SD) of 15. As such, scores higher
than 100 indicate that an individual is acquiring expected skills
faster than same aged individuals, and scores below 100 indicate
that the relationship between skill acquisition and age is slower
than average. That is, if we consider the numerator the level of
skills acquisition of a child and the denominator the child’s CA,
the greater the numerator in relation to the denominator, the
faster the developmental growth of the child and the higher
their IQ score will be. For example, a child who attains the
types of skills common to a 6-year-old in 6 years, and therefore
has an IQ of 100, is developing more slowly than a child who
takes 5 years to acquire the same skills and has an IQ of 120,
and is developing more quickly than a child who took 8 years
and has an IQ of 75.

IQ is thought to be stable after early childhood (Hoekstra,
Bartels, & Boomsma, 2007; Schneider, Niklas, & Schmiedeler,
2014) through adolescence and also predicts adult levels of func-
tioning (Koenen et al., 2009; McCall, 1977). However, while IQ
scores can be used directly when comparing two groups of similar
cognitive abilities, this solution is not tenable in the case where
there is a discrepancy in skill acquisition rates between the two
groups being compared, as is the case when conducting research
comparing individuals with intellectual disabilities to typically
developing children. By definition, individuals with intellectual
disabilities acquire skills at slower rates than typically developing
individuals. Thus, matching on the basis of IQ alone leads to a
similar dilemma of matching on the basis of CA – by definition
of their designations, the groups will never be comparable on
this dimension.

The primary goal in matching clinical and neurotypical groups
is to ensure that the groups are at a comparable developmental
level (Burack, Iarocci, Bowler, & Mottron, 2002; Burack et al.,
2004; Mervis & Klein-Tasman, 2004). This practice makes it pos-
sible to ask the empirically precise question: does the clinical
group’s development of skill/ability X differ from that of typical
development? By nature of their diagnosis, the clinical group’s
general development differs from what is considered typical; how-
ever, in order to answer more rigorous questions regarding the
development of a specific cognitive construct, rather than general
development, it is necessary to, at the very least, attempt to equate
general developmental level.

Even matching groups on overall IQ is problematic as it
assumes that this single number, which reflects a weighted sum
of verbal and nonverbal cognitive abilities, is acquired in the
same way between populations, but this is not usually the case
across developmental disorders with an etiological cause. Take,
for example, the situation where groups of individuals with
Williams syndrome (WS) are being compared to individuals with
Down syndrome on the basis of overall IQ to assess differences
in some construct such as nonverbal working memory. As a result
of stronger verbal than nonverbal skills that are common among
persons with WS (Bellugi, Bihrle, Jernigan, Trauner, & Doherty,
1990; Mervis & Klein-Tasman, 2000), the overall IQ scores
which reflects a combination of scores on verbal and nonverbal
abilities, of those with WS, would overestimate their abilities in a
nonverbal domain, especially in comparison to a group of individ-
uals with Down syndrome who have stronger nonverbal than ver-
bal skills. That is, despite having the same overall IQ score, this
single number does not accurately reflect the group differences in
patterns of abilities that would meaningfully be linked to perfor-
mance and might lead to an erroneous conclusion that a deficit
in a particular area of function is present when it is not. That is,
matching on global level may not have been an adequate matching
strategy and instead a decision should have been made to match on
the basis of the subtest that most closely matched the construct
being measured (Burack et al., 2004; Mervis & Klein-Tasman,
2004), a task to which the data we present below can contribute.
While matching approaches clearly are not a panacea, and strate-
gies for adequate comparisons continue to be refined, they play
an essential role in basic comparisons between groups.

The goals of the developmental approach to intellectual dis-
ability include understanding the cognitive strengths and weak-
nesses of a group of individuals who share similar etiologies.
Findings of “true” delays or deficits of an area of function relative
to what would be expected given that groups development pro-
vides researchers and clinicians with an opportunity to develop
interventions to remediate skill differences. Thus, precise method-
ologies, and approaches are needed to determine where and how
to best intervene to support the learning and function of those
with intellectual disability. To ensure that our matching measures
are adequate, they must be informed by both our theoretical
understanding of development and the constructs we are measur-
ing in our studies, as articulated in the developmental approach to
intellectual disability, as well as by our understanding of the
empirical limits of the tests we use to make matching decisions.

Fundamental Statistical Assumptions of Mental Age
Matching

Fundamentally, matching strategies rely on the assumption that
there is a linear relationship between a person’s score on an IQ
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test and their age. The complexity of matching occurs when there
is a meaningful discrepancy between groups in the relationships
between age and IQ. In this case, MA matching strategies can
and should be used. MA is used frequently in comparison studies
of, for example, individuals with an intellectual disability and typ-
ically developing participants. In essence, the question asked by
using the strategy is: at what age would person X’s raw score be
considered average. It is here that the key assumption of linearity
is invoked.

As an example of why linearity is a crucial assumption in the
MA matching formula, consider two separate scenarios. In the
first, MA matching may be used to match a 10-year-old with
an IQ of 70 whose MA is 7 years (MA = 10*70/100) with a 7-year-
old with an IQ of 100 whose MA is also 7 years (MA = 7*100/
100). Researchers who adopt the developmental approach to intel-
lectual disability research would likely support the comparison of
these individuals on a particular cognitive construct (e.g., working
memory) because the children would be approximately matched
for developmental level. The MA-matching equation, however,
would not likely be used to compare a 50-year-old with an IQ
of 50 whose MA is 25 years (MA = 50*50/100) with a 25-year-old
with an IQ of 100 whose MA is also 25 years (MA = 25*100/100).
Here, it seems unreasonable to compare the working memory
abilities of the 50-year-old with an IQ of 50 to that of the typically
developing 25-year-old because we do not expect working mem-
ory abilities to continue to develop linearly through adulthood,
and do not expect cognitive abilities to continue increasing
with the same slope much past the ages of 16–18 years (e.g.,
Biggs & Collis, 1982; Case, 1980; Selman, 1980). Though extreme,
this example illustrates the importance of linearity in MA match-
ing. Linear development is largely assumed when matching across
intelligence tests and age ranges, yet where this assumption holds,
for which tests, at what ages, has, to our knowledge, yet to be
empirically determined.

Three intelligence tests that are commonly administered in
both research and clinical settings are the Wechsler Abbreviated
Scale of Intelligence – second edition (WASI-II; Wechsler,
2011), the Wechsler Intelligence Scale for Children – fifth edition
(WISC-V; Wechsler, 2014), and the Stanford Binet Intelligence
Scales – fifth edition (SB5; Roid, 2003). These measures are
intended to be administered individually to participants and
have multiple subscales that assess different domains of intelli-
gence. Each of the tests have different factor structures, and
each of the original measure authors had different goals in con-
structing these scales, as well as different philosophies related to
both what “intelligence” is and how we measure it.

When Binet first published the revision of the Binet–Simon
test in 1908, expanding the number of items and providing age-
based norms for children, he focused on the power of the overall
score of the test (commonly understood now to reflect “g” or a
general intelligence factor), stating that “it matters very little
what the tests are so long as they are numerous” (Binet, 1911/
1916, p. 329; as cited in Boake, 2002). In contrast to Binet’s mono-
thetic approach, Weschler, who began his career as a psychome-
trician in the Army administering the Army Alpha and Army
Beta tests (used to rule out those who were and were not deemed
competent to be in the war), noted that the strength of the Army
tests were that one could analyze “the subject’s performance on
the individual tests which comprise the examination, in order
to discover” if the subject had “any special abilities or disabilities”
(Wechsler, 1932, p. 254; as cited in Boake, 2002). Based on his
experience that subtests were important clues to abilities, his

statistical critique that MA was not a valid manner in which to
measure adult intelligence owing to the statistical artifacts of
applying MA ratio to adults, he promoted the use of standard
scores as a function of the mean deviation and SD of particular
age groups.

There have been years of debates surrounding best practices in
matching strategies, and “battles” between (a) defect theorists who
invoke that intellectual disability is pathognomonic with cognitive
deficits, justifying comparing those with an intellectual disability
to typically developing children matched on CA, and (b) develop-
mental psychopathologists who want to understand whether a
particular skill is impaired or intact on the basis of an individual’s
developmental level. Nonetheless, despite these debates, funda-
mental, statistical assumptions that underlie developmental
matching practices have not been verified. That is, is there a linear
relationship between age and performance on IQ tests such that
the MA = IQ*CA/100 formula provides an accurate level of com-
parison? Do these assumptions hold at some ages and not others?
On some subtests and not others? For some IQ tests and not oth-
ers? At what age does this relationship begin to break down? It is
these set of questions which we set out to test using three com-
monly used standardized IQ tests in studies of individuals with
intellectual disability: the WISC-V; the WASI-II, often used in
research studies; and the SB5. In doing so, we rely on the norma-
tive data tables presented in the manuals of each of these tests,
rather than on data that we have explicitly collected. Further, in
the analysis section, we remain agnostic to the structure of the
tests. That is, we treat all subscale and standard scores for each
test in the same manner. We begin by describing the psychomet-
ric properties of the three tests we are examining, followed by a
description of our process, estimation, parameterization, and
analysis procedures. Our goals are to provide evidence for the
empirical limits of all of the subscales of each test in line with
Ed’s essential call for MA matching in the study of persons
with intellectual disability.

Method

Measures

Wechsler Abbreviated Scale of Intelligence – second edition
(WASI-II)
The WASI-II was published in 2011 and is used to assess individ-
uals ranging from 6 to 90 years old. It includes four subtests:
block design, vocabulary, matrix reasoning, and similarities.
Normative data for the WASI-II are based on a sample of 2,300
examinees that were tested between January 2010 and June
2011. One hundred examinees were tested in each of the 23 age
groups of the WASI-II. The range of ages in each age group varies
and spans from 7 months (i.e., 6:0–6:7) to 20 years (i.e., 45–64).
Examinees in the normative data sample were stratified on key
demographic variables including sex, race/ethnicity, self or parent
education level, and geographic region based on 2008 United
States census data.

The WASI-II Manual (Wechsler, 2011) reports adequate reli-
ability and validity. Internal consistency reliability coefficients
for each of the WASI-II subtests were obtained for both children
and adult samples using the split-half method and range from .83
to .95. Test–retest stability was calculated using Pearson’s
product-moment correlation for each subtest by retesting a sub-
sample of 215 participants 12–88 days after the original testing.
Corrected stability coefficients range from .79 to .96, which are
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considered high for test-retest reliability. Interscorer Agreement
for the WASI-II was also high across all of the subtests, ranging
from .84 to .99. Evidence for the validity of the WASI-II is
based on the test content, internal structure, and relationship
with other measures assessing the same or similar constructs.
These measures all supported adequate levels of validity in the
WASI-II, including significant correlations with other measures,
such as the WISC-IV, the Wechsler Adult Intelligence Scale –
fourth edition, and the Kaufman Brief Intelligence Test, which
measure similar constructs to those measured by their WASI-II
counterpart subscales.

Wechsler Intelligence Scale for Children – fifth edition (WISC-V)
The WISC-V was published in 2014 and is used to assess
the intelligence of children ages 6 to 16 years old. It includes a
total of 16 subtests: block design, similarities, matrix reasoning,
digit span, coding, vocabulary, figure weights, visual puzzles, pic-
ture span, symbol search, information, picture concepts, letter-
number sequencing, cancelation, comprehension, and arithmetic.
Normative data for the WISC-V are based on a sample of 2,200
children that were tested between April 2013 and March 2014.
Two hunderd examinees were tested in each of the 11 age groups
of the WISC-V. Each of the 11 age groups of the WISC-V is 12
months (e.g., 6:0–6:11). Examinees in the normative data sample
were stratified on key demographic variables including sex, race/
ethnicity, parent education level, and geographic region based
on 2012 United States census data.

The WISC-V Technical and Interpretative Manual (Wechsler,
2014) reports adequate reliability and validity. Internal consis-
tency reliability coefficients for each of the WISC-V subtests
were obtained for all age-grouping samples using the split-half
method, corrected by the Spearman–Brown formula, and range
from .81 to .94. Test–retest stability was calculated using
Pearson’s product–moment correlation for each subtest by retest-
ing a subsample of 218 participants 9–82 days after the original
testing. Corrected stability coefficients range from .71 to .90,
which are considered adequate for test–retest reliability.
Interscorer Agreement for the WISC-V was also high across all
of the subtests, ranging from .97 to .99. Evidence for the validity
of the WISC-V is based on the test content, internal structure, and
relationship with other measures assessing the same or similar
constructs. These measures all supported adequate levels of valid-
ity in the WISC-V, including significant correlations with other
measures, such as the Wechsler Preschool and Primary Scale of
Intelligence – Revised, the Wechsler Adult Intelligence Scale
(fourth edition), and the Kaufman Assessment Battery for
Children (second edition), which measure similar constructs to
those measured by their WISC-IV counterpart subscales.

Stanford–Binet Intelligence Scales – fifth edition (SB5)
The SB5 was published in 2003 and is used to assess individuals
who are 2 to 90 years old. It includes a total of ten subtests, with
nonverbal and verbal subtests for each of the following five con-
structs: fluid reasoning, knowledge, quantitative reasoning, visual-
spatial processing, and working memory. Normative data for the
SB5 are based on a sample of 4,800 examinees that were tested
over a 12-month period in 2001 and 2002. Thirty age groups
were defined for the sampling purposes of the SB5, with the
range of ages in each group varying between six months (i.e.,
2:0–2:6) to 10 years (i.e., 40–49). Examinees in the normative
data sample were stratified on key demographic variables

including sex, race/ethnicity, socioeconomic level, and geographic
region based on 2001 United States census data.

The SB5 Technical Manual (Roid, 2003) reports adequate
reliability and validity. Internal consistency reliability coefficients
for each of the SB5 subtests were obtained for all age-grouping
samples using the split-half method, corrected by the
Spearman–Brown formula, and range from .72 to .96. Test–retest
stability was calculated using Pearson’s product–moment correla-
tion for each subtest by retesting a subsample of 356 participants
1–39 days after the original testing. Corrected stability coefficients
range from .66 to .91, which are considered adequate for
test–retest reliability. Interscorer Agreement for the SB5 was
also high across all of the subtests, ranging from .74 to .97.
Validity of the SB5 is demonstrated based on the assessment of
content-related, criterion-related, and construct-related evidence.
These measures all supported adequate levels of validity in the
SB5, including significant correlations with other measures,
such as the Wechsler Preschool and Primary Scale of
Intelligence – Revised, the Wechsler Adult Intelligence Scale –
third edition, the Woodcock-Johnson III Tests of Cognitive
Abilities, and the Wechsler Individual Achievement Test – second
edition, which measure similar constructs to those measured by
their SB5 counterpart subscales.

Procedures

Test construction assumptions and known parameters
Different intelligence tests build IQ subscale norms for a popula-
tion of a given age range with the same general procedure. In
general, a subscale is created and standardized by testing a large
number of people within an age bracket, then assigning a subscale
score to each level of performance based upon the number of peo-
ple who achieved that score or lower. The higher the subscale
score, the fewer individuals who performed at least that well.
For all three IQ tests considered in this article, the subscale scores
on the tests are capped such that the lowest obtainable score is
received only by those who are at most 3 SDs below the mean
(the 0.1% percentile), and those who obtain the highest score
perform at least 3 SDs above the mean (the 99.9% percentile).
The WASI-II reports standardized scores as t scores with a
mean of 50 and a SD of 10. The WISC-V and the SB5 report
standardized scores as scaled scores with a mean of 10 and SD
of 3. For the sake of simplicity, these two types of scores will
be both referred to as standard scores. Standard scores can be
summed and converted to create different composite scores for
each assessment (e.g., Full-Scale Intelligence Quotient [FSIQ],
Verbal Comprehension Index [VCI], or Perceptual Reasoning Index
[PRI]). Because age is not a variable when converting a standard
score sum to a composite score, the current article focuses on
standard scores at the level of individual subscales. Table 1
gives the minimum, median, and maximum subscale scores for
the three tests on the basis of the test manuals.

Estimations
To estimate the performance distribution for each age group on
each subscale test, the process of assignment of scores to percentiles
and standard scores (described above) was reversed. In a first step,
standard scores were transformed into z scores based on the knowl-
edge of the center of each scaled score and knowledge that the larg-
est and the smallest standard score represents a performance
(number of correct responses) 3 SDs above and below the mean,
respectively. In a second step, z scores were converted into
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percentiles, providing a cumulative performance distribution. In a
third step, this cumulative performance distribution was converted
into a probability distribution, from which the mean deviation and
SD were extracted. These derived means and SDs formed the basis
of the main analysis. For example, if a fictional subscale on the
Stanford–Binet stated that a raw score of 20 gave a standard
score of 10 (the median), and a raw score of 21 gave a standard
score of 11 (0.333 SDs above the mean), we could infer that 50%
of people would score 20 or below and 63% of people would
score 21 or below. Therefore, 13% (63%–50%) of the sample in
the norming study received a raw score of 21. In this way, we rec-
reated the distribution of raw scores for every age bracket. This pro-
cess allowed us to consider the raw performance of each age bracket
and test whether these scores increase linearly. Note that, because
the rounding and truncating procedures used by the makers of
IQ tests result in a loss of information, these means and SDs are
estimates of the original distributions. However, the difference
between those and the ones presented here are minimal.

The process described above was repeated for every subscale
and every age range presented in each of the test manuals.
Examples of these subscale score distributions are presented in
Figure 2, which plots the mean deviation and SD of subscale
scores by the center of each age bracket, excluding age brackets
for those over 20 years old.

Analysis procedures
Having reverse-engineered the distributions of raw scores, we sub-
sequently examined how performance on the IQ tests changes
with age and assessed the veracity of the notion that MA =
CA*IQ/100. Since adult IQ scores are stable, and as described in
the example above, the linear relationship between age and IQ
was not expected to hold in the oldest age brackets, we only con-
sidered the raw scores for participants less than 20 years of age.
The aim of this analysis was to determine whether a simple linear
model could be applied to the data. If different linear functions
were necessary to describe the age–score relationship for different
age ranges, then these different ranges could not be compared to
each other using the MA-matching theory and, instead, some
other method would be necessary.

We tested for linearity in each subscale by fitting multiple seg-
mented regressions and choosing the best model using the
Bayesian information criterion (BIC). Segmented regression is a
technique to determine which regions of the data share the
same relationship with some variable. The BIC combines the like-
lihood or degree of fit with model complexity to give a measure of
quality. An ideal model would be extremely simple yet fit the data
very well. Lower values of the BIC imply a higher quality model.
We used the BIC to determine how many segments are optimal in
the segmented regression. In other words, we used the BIC to
determine how many disparate sets of linearly comparable ages

there are for participants under age 20. If the best fit indicated
a single segment, then the entire set of age brackets were best
fit by a simple linear regression and all age brackets are linearly
comparable to one another. If the best fit included multiple seg-
ments, then the linear function that best described the age–per-
formance relationship changes with age, and some brackets
could not be linearly compared to some others. For each subscale,
we fit six regressions with 1, 2, 3, 4, 5, or 6 segments using the
segmented package in R (Muggeo, 2008); the package uses a
Taylor expansion of the regression to transform the nonlinear
problem of where to place break points into a linear regression
problem (Muggeo, 2003). To ensure an accurate fit and to ensure
that the model can capture discontinuities in the data (two such
discontinuities appear in the WISC-V for the Coding and
Symbol Search subtests because they have different sets of
norms for different age groups), we divided each age bracket
into 10 smaller brackets and distributed the reverse-engineered
distribution among it evenly. Having fit each regression, we
then computed the BIC for each regression from the residual
sum of squares, which we derived from the segmented output,
the number of parameters given in the regression model, and
the sample size, which was computed using the given sample
sizes per age bracket of each test. For each subscale we selected
the regression with the lowest BIC for our final conclusions.

Results

The results of our analysis indicate that, for the three most com-
monly used measures of IQ, the assumption of linearity between
MA, CA, and IQ is not always true and varies by subtest. That is,
the WASI-II, WISC-V, and SB5 do not abide by the assumption
of linearity overall, at least at the subscale level. Here, we describe
general trends across the subscales of the three tests that were
examined.

The most important results of the analysis are the ones pre-
sented in Table 2 and Figure 1, with supporting information in
Table 3 and Figures 2–5. Table 2 reflects the relative BIC that
best described the nature of the distribution of the subscales as
a function of age. For reference, the BIC is a criterion for selecting
one model over another among a set. Similar to correlations or
effect sizes, BIC sizes are associated with different indicators of
fit. The critical information in the BIC is its size relative to
other BICs; therefore, in Table 2, we present the smallest BIC
for each subscale as 0.0 and other BICs for the subscale as how
much larger they are than the smallest one to indicate how
much better one model is over the others. A difference in BIC
between 0–2 suggests that the alternative models are not worth
considering, while a difference in BIC between 2–6 suggest that
there is some positive evidence for an alternative model, a differ-
ence in BIC between 6–10 suggests strong evidence for the alter-
native model, and a difference in BIC greater than 10 indicates
very strong support for an alternative model (Kass &
Wasserman, 1995). As can be seen in Table 2, across all subtests
for each of the IQ tests examined (with the exception of the Binet
NV-VSP) there was a clear best fitting model where smallest BIC
was at least two less than all others. The bolded values in the table
indicate the number of segments for each subscale that best reflect
its distribution, with a higher value of N reflecting a higher num-
ber of times the scale changes in its linearity. Figure 1 provides a
visual representation of the number and approximate age of the
breakpoints for all subtests. The specific age related to each of
the breakpoints can be found in Table 3.

Table 1. Minimum, median, and maximum subscale scores, by IQ test

IQ test

Subscale score

Minimum Median Maximum

SB5 1 10 19

WASI-II 20 50 80

WISC-V 1 10 19

Note. These values were obtained from the respective test manuals.
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There were overall four different classes of models represented
across the data, though the frequency of these classes were not
equally distributed. Sample models and data fits for each of the
four classes are presented in Figures 2–5, and each model class
is described below.

In Model 1 (Figure 2), there are no changes in linearity across
any age group. This would be represented in Table 2 by a BIC of
zero in the first column (N = 1). Although this is the ideal model
for MA matching, as it suggests a linear relationship between age
and IQ across the age range of the test, this pattern was only noted
for the WISC-V cancellation subtest (WISC CA), in which chil-
dren must cross out targets presented in an array of targets and
nontargets in a speeded manner.

In Model 2 (Figure 3), there is a single break point, represented in
subtests where BIC is zero in the N = 2 column. All of the subtests of
the WASI-II follow this model, though the age at which breakpoints
occur between slopes differ for each subtest (see Table 3). For exam-
ple, the best fit model for the WASI-II matrix reasoning (WASI MR)
subtest (row 3 of Table 2) has two segments (BIC = 0 at N = 2), sug-
gesting that two regression lines of different slopes best explain the
data. Looking at the corresponding row in Table 3, one can see
that this breakpoint occurs just before age 10, suggesting that the
relationship between raw score and age changes at this age on this
subtest. By looking at Figure 1, one can examine the age at which
these breakpoints differ relative to other subtests specifically.

Models 3 and 4 have multiple break points in each subtest, but
these occur for very different reasons. In Model 3 (Figure 4),
which represent the WISC-V symbol search (WISC SS) and cod-
ing (WISC CD) subscales, there is a stark break point and change
in slope that begins again at floor. This pattern reflects the fact
that the test itself changes between those age brackets. For exam-
ple, as can be seen in Figures 2, which is based on the data for the
symbol search subtest, there is an abrupt change at age 8. On this
subtest children 6–7 years of age have 2 minutes (120 seconds) to
determine whether a target symbol presented on the left of the
page is also present in a group of five symbols on the right side
of the page. Children are instructed to mark a box labelled
“No” if the search group does not contain the target symbol on

the left. In contrast, for children between the ages of 8 and 16
years, there are two target symbols, rather than one, and children
mark “No” if neither of target symbols are present. Thus, raw
scores, which reflect number of items correct begin again at
zero at the age-8-year mark, and there is therefore a change in
slope at 7 years, 11 months, and 30 days as, as well as one at 8
years, 0 months, and 1 day, accounting for two of the three
break points in this model. In addition, there is a third break
point around age 14 for the coding subtest and around 12 for
the symbol search subtest that reflect a change in slope that is
unrelated to a change in instruction. However, both before and
after the breakpoint, the slopes reflecting changes in raw scores
as a function of age are, as in Model 1, linear, suggesting that
matching MAs within each set of slopes would work well, but
that matching across those ranges is problematic.

Finally, Model 4 reflects multiple break points. This pattern is
reflected most clearly in the Stanford–Binet subtests where there
were three to four breakpoints in each subtest. For example, on
the Stanford–Binet nonverbal fluid reasoning subscale, a routing
subtest, there were three breakpoints (BIC = 0 at n = 4), with
changes in slope around age 5, 7, and 11 years of age (see
Figure 5). These changes are commensurate with changes in the
materials used in the tests, with children under 5 being presented
with manipulatives and then beginning around age 7, the materi-
als switch so that children are now being asked to respond to stan-
dard matrices.

Discussion

MA matching has provided a methodological tool with which to
improve the scientific rigor of research on intellectual disability,
and a means with which to conceptualize, operationalize, and actu-
alize Ed’s developmental approach to intellectual disaibility. The
use of matching strategies has allowed us to recast our understand-
ing and focus away from deficits or defects, in favor of a more
nuanced look at the relation between specific areas of performance
and more general cognitive function. This methodological tool has
led to more humane, compassionate, and scientifically accurate
narratives about the strengths and weaknesses of individuals with
specific conditions, and serves both to help us understand atypical
development and to underscore the inherent universality of devel-
opment. The more precise and accurate we are in our use of MA-
matching strategies, the better able we will be to truly understand
the developmental trajectories of those we aim to serve.

Much has been debated about what MA measures and metrics
should be used to answer which types of research questions, and
how comparison groups should be constructed to optimize the
veracity of the knowledge to be gained (see Burack, 2004).
What has become clear from this line of research is that IQ
tests and the scores we derive from them, including MAs, have
a broad impact. What has been less clear is information about
how the tests that we choose impact our data. Here we demon-
strate that rates of knowledge acquisition on IQ tests are not uni-
formly linear either across or within tests, making plain a need to
consider how linearity changes within each subtest in our under-
standing of how best to match, which subtests to use at what ages,
and the impact of specific matching strategies on any conclusions.

Recommendations

Overall, the data suggest that the most linear subtests are the ones
we can have the most confidence in using to compare groups of

Figure 2. Representative image of linear relationship between age and raw scores
(WISC-V cancellation subtest).
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individuals with intellectual disability to those who are typically
developing across all age groups. These tests include mostly those
subtests that have a timed component, such as the WISC-V cancel-
lation, symbol search, and coding subtests. These subtests all map
on to the processing speed scale of the WISC-V and might repre-
sent a reasonable matching strategy to use for experimenters who
are trying to compare groups on computerized tasks in which mea-
surements of reaction time and accuracy are central.

Matching on the basis of processing speed may not be relevant
to a research group’s empirical question. If this is the case, then
researchers to be mindful about the range of CAs and MAs
they are considering and how that relates to the subtest they are
using for matching purposes. Wherever possible researchers

should try to stay “within slope” on the matching subtest. For
example, the knowledge subtest of the SB5 shows changes in
slopes at aroud 5 and 10 years of age. If matching on this subtest
is relevant to the particular research question being asked, then it
would be adviseable to test children between CA and MAs
between 5 and 10 years (where there is a linear relationship
between CA and IQ) rather then testing children whose CA and
or MAs straddle a break (e.g. 7–12-year-olds). While this might
seem constraining, it provides some assurance that the matching
strategy that is adopted by the researcher also fits with the funda-
mental structure of the test being used to match.

The impact of these discontinuities in linearity can have con-
siderable impact on researchers’ interpretation of research

Table 2. Relative Bayesian information criteria (BICs) for segmented regressions for N segments

Test Subscale

Number of segments

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

WASI Block design 32.0 0.0 13.0 27.8 42.6 57.7

WASI Vocabulary 79.8 0.0 11.2 25.2 40.0 55.0

WASI Matrix reasoning 134.4 0.0 11.9 26.6 41.7 56.9

WASI Similarities 41.9 0.0 13.2 26.7 41.8 57.0

Binet NV-FR 2156.7 111.1 102.3 0.0 13.3 29.1

Binet NV-K 965.3 159.5 0.0 5.9 21.0 35.5

Binet NV-QR 1782.1 170.6 0.0 10.5 16.6 31.5

Binet NV-VSP 1426.1 0.7 0.0 13.4 26.7 41.7

Binet NV-WM 1749.4 56.6 0.0 11.0 17.5 31.9

Binet V-FR 1335.0 32.3 21.8 0.0 13.1 24.4

Binet V-K 951.8 27.2 0.0 5.3 15.5 30.8

Binet V-QR 1231.5 8.6 0.0 11.8 9.3 25.3

Binet V-VSP 1190.8 45.5 4.2 0.0 11.7 26.5

Binet V-WM 1926.7 17.8 0.0 9.1 25.0 40.7

WISC BD 46.1 0.0 14.7 29.9 45.7 61.6

WISC SI 97.3 0.0 9.6 25.6 41.5 174.3

WISC MR 171.4 0.0 11.6 26.1 42.1 58.0

WISC DS 64.4 0.0 9.5 25.4 125.9 57.3

WISC CD* 2.8 10.5 33.6 0.0 15.6 31.6

WISC VC 58.4 0.0 14.2 29.6 45.2 61.2

WISC FW 90.9 0.0 15.4 31.3 47.3 63.1

WISC VP 77.0 0.0 12.0 27.7 43.7 59.5

WISC PS 80.2 0.0 12.3 27.9 43.8 59.9

WISC SS* 144.2 135.0 174.9 0.0 15.5 31.4

WISC IN 114.4 0.0 13.3 28.5 42.6 58.0

WISC PC 78.8 0.0 13.3 28.9 44.0 59.8

WISC LN 125.2 0.0 7.9 22.4 37.9 53.4

WISC CA 0.0 5.2 20.9 36.8 52.9 68.9

WISC CO 54.8 0.0 14.7 30.3 45.9 61.9

WISC AR 220.1 0.0 6.9 22.7 38.7 54.5

Note. Bold: zero values, smallest BIC and best fit. Italicized: BIC that is no more than 2 greater than smallest value for that subscale. *The CD and SS subscales of the WISC have three
segments in their best fit, where the first segment is discontinuous with the second and third. See Figure 2 for a visualization of this.
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findings. This applies both to prospective scientific inquiry, as
well as to interpreting currently published literatures. This
increased precision and nuance in our understanding and our
measurements will allow for a clear developmental picture of
the strengths and weaknesses of those with intellectual disaibility,
within the context of a developmental approach, to emerge.

Limitations

One relevant critique of the analyses presented here is that MA
matching is typically conducted at the level of either FSIQ or
some other IQ composite, for example Verbal IQ (VIQ) or
Performance IQ (PIQ), rather than at the subscale level. The pri-
mary reason for conducting these analyses at the subscale level is
that composite scores, such as FSIQ, are based on the composite
of standardized scores of various subtests. For instance, the VIQ
composite score of the WASI-II represents a conversion of the
sum of the vocabulary and similarities subtest standardized
scores. The conversion from standardized score sums to compos-
ite score does not include age as a variable because it has already
been accounted for in the conversion from raw score to standard-
ized score. In other words, the linearity assumptions we set out to
evaluate could only be tested at the subscale level. The underlying
structures of these subscales are a necessary foundation to under-
stand how they are combined to create our conceptualization of
these latent constructs. The farther away our measures get from
the construct of interest, the greater the likelihood that our
assumptions will not be met.

The mathematical evidence we provide in our analyses appear
to reflect and support widely held theories of typical child
cognitive development. In general, slopes at younger ages are

significantly steeper than those at the older ages, highlighting
that the rate of cognitive development at these ages is faster
than at older ones. This is particularly evident in the finding of
a breakpoint at age 5 years for most of the subtests of the
Stanford–Binet that is contrasted with the fact that both the
WASI-II and the WISC-V can only first be administered at 6
years of age. These data help provide empirical support for our
understanding that IQ scores tend to be unstable in early child-
hood: cognitive functioning is rapidly developing during the
early childhood years and the steeps slopes presented in Figures
2–5 imply that small variations in raw scores can result in larger
changes in standard scores at younger ages than they do at older
ages. Examining developmental trends in later childhood, 23 out
of the 29 subtests evaluated in our analyses demonstrated a break
between the ages of 9.5 to 12.0 years old. These breaks represent a
“flattening” of the slope representing the rate at which raw score
changes as a function of age. This shift maps on to the preadoles-
cent period, or the transition from concrete operational to formal
operational stages in Piaget’s theory of development (Piaget,
1972).

An important limitation of the present analyses is that they
reflect norms collected on large datasets of typically developing
children and adolescents. While this type of norming work with
typically developing populations is intensive and important, it
may be less relevant to our understanding of cognitive develop-
mental trajectories of children and adolescents with intellectual
disability, especially if associated with a specific genetic syndrome.
As the rate of children diagnosed with intellectual disability con-
tinues to increase (Zablotsky et al., 2019), so too does the pressing
need for test developers to create validated testing norms for these
children. These norms are crucial in order to provide clinicians

Figure 1. Breakpoints of each subtest of each intelli-
gence scale.
Note. WISC-V subtest order is organized as a function
of whether they are primary of secondary subtests
with abbreviations representing the following subtests:
AR = arithmetic; BD = block design; CA = cancellation;
CD = coding; CO = comprehension; DS = digit span;
FW = figure weights; IN = information; LN = letter–num-
ber sequences; MR = matrix reasoning; PC = picture con-
cepts; PS = picture span; SI = similarities; SS = symbol
search; VC = vocabulary; VP = visual puzzles. WASI-II sub-
tests are grouped by verbal and then nonverbal tasks.
For the SB-5, the verbal subtests are presented first fol-
lowed by the nonverbal subtest and the abbreviations
are as follows: V- = verbal; NV- = nonverbal; FR = fluid
reasoning; K = knowledge; QR = quantitative reasoning;
VSP = visual-spatial processing; WM = working memory.
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and stakeholders with information regarding their child(ren)’s
development.

As our analyses demonstrate, even with widely used and gen-
erally supported tools, cognitive development cannot be captured
in a single test score, or even a combination of multiple subtest
scores. Heeding the ever-relevant lessons of Ed Zigler, we also rec-
ognize that cognitive development is but a small component of
children’s overall development. Perhaps, we, as researchers,
focus on cognitive development because we have tools in which

we have invested decades of intellectual time and effort and, as
such, also our confidence in what the measures represent.
However, as researchers, we are obliged to interpret such unidi-
mensional snapshots of development as exactly that. While we
hope that the unpacking of the concept of MA and providing a
pragmatic examination of the limits of its measurement will
advance the empirical practice of MA matching in future research,
we recognize that it is not a panacea for developmental science.
We use these tools to make comparisons between groups of indi-
viduals and draw conclusions from these data about development;
however, development cannot be adequately captured in a single
time point.

Relevant to both clinical and research practices, the original
authors of the IQ tests examined here, Binet and Weschler,
each acknowledged the limits of their tests. Binet noted that IQ

Table 3. Ages (in years) at each breakpoint for each IQ subtest

Test Subscale

Age (in years)

Break 1 Break 2 Break 3

WISC BD 11.23

WISC SI 11.23

WISC MR 9.76

WISC DS 9.68

WISC CD* 7.98 8.02 14.06

WISC VC 10.77

WISC FW 10.78

WISC VP 10.47

WISC PS 10.30

WISC SS* 7.98 8.02 12.10

WISC IN 10.41

WISC PC 10.12

WISC LN 9.69

WISC CA 0.00 0.00 0.00

WISC CO 11.87

WISC AR 10.36

WASI Block design 14.07

WASI Vocabulary 11.50

WASI Matrix reasoning 9.54

WASI Similarities 11.14

Binet NV-FR 4.98 7.53 11.49

Binet NV-K 3.98 10.64

Binet NV-QR 5.15 11.03

Binet NV-VSP 7.53 13.54

Binet NV-WM 6.97 11.46

Binet V-FR 3.42 7.11 11.32

Binet V-K 4.60 9.97

Binet V-QR 7.69 11.50

Binet V-VSP 4.82 8.21 14.13

Binet V-WM 7.83 13.37

AR = arithmetic; BD = block design; CA = cancellation; CD = coding; CO = comprehension; DS
= digit span; FW = figure weights; IN = information; LN = letter–number sequences; MR =
matrix reasoning; PC = picture concepts; PS = picture span; SI = similarities; SS = symbol
search; VC = vocabulary; VP = visual puzzles. WASI-II subtests are grouped by verbal and then
nonverbal tasks. For the SB-5, the verbal subtests are presented first followed by the
nonverbal subtest and the abbreviations are as follows: FR = fluid reasoning; K = knowledge;
V- = verbal; NV- = nonverbal; QR = quantitative reasoning; VSP = visual-spatial processing;
WM = working memory

Figure 3. Representative image of distribution with two regression lines to fit rela-
tionship between age and raw scores (WASI-II matrix reasoning subtest).

Figure 4. Representative image of distribution with three regression lines to fit rela-
tionship between age and raw scores (WISC-V symbol search).
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testing should only be one part of the complete assessment of an
individual, whereas Wechsler spent 30 years of his career attempt-
ing to develop tests of what he called “nonintellective factors”
such as drive, motivation, and persistence (among others) that
impacted an individual’s performance and would “correlate suffi-
ciently with the full-scale scores, and yet emerge as factorially dif-
ferent” (Wechsler, 1981, p. 85). That is, in spite of their
monumental bodies of work and the immeasurable influence
the measures these two individuals developed, they both knew
that there was more to “intelligence,” broadly defined than
could be measured on a single test. Zigler also clearly agreed
with this in his quest to understand and work with the whole per-
son. “Cognitive skills are very important, but they are so inter-
twined with the physical, social, and emotional systems that it is
shortsighted, if not futile, to dwell on the intellect and exclude
its partners” (Zigler & Bishop-Josef, 2006, p. 22).
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